• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

Reasoning with inductively defined relations in the HOL theorem prover (1992)

by Juanito Camilleri, Tom Melham
Add To MetaCart

Tools

Sorted by:
Results 1 - 10 of 49
Next 10 →

Proving Java Type Soundness

by Don Syme , 1997
"... This technical report describes a machine checked proof of the type soundness of a subset of the Java language called Java S . A formal semantics for this subset has been developed by Drossopoulou and Eisenbach, and they have sketched an outline of the type soundness proof. The formulation developed ..."
Abstract - Cited by 91 (2 self) - Add to MetaCart
This technical report describes a machine checked proof of the type soundness of a subset of the Java language called Java S . A formal semantics for this subset has been developed by Drossopoulou and Eisenbach, and they have sketched an outline of the type soundness proof. The formulation developed here complements their written semantics and proof by correcting and clarifying significant details; and it demonstrates the utility of formal, machine checking when exploring a large and detailed proof based on operational semantics. The development also serves as a case study in the application of `declarative' proof techniques to a major property of an operational system. Contents 1 Introduction 2 1.1 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 What is Type Soundness for Java? . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 The Tool: DECLARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Outl...

Set Theory for Verification: II - Induction and Recursion

by Lawrence C. Paulson - Journal of Automated Reasoning , 2000
"... A theory of recursive definitions has been mechanized in Isabelle's Zermelo-Fraenkel (ZF) set theory. The objective is to support the formalization of particular recursive definitions for use in verification, semantics proofs and other computational reasoning. ..."
Abstract - Cited by 45 (22 self) - Add to MetaCart
A theory of recursive definitions has been mechanized in Isabelle's Zermelo-Fraenkel (ZF) set theory. The objective is to support the formalization of particular recursive definitions for use in verification, semantics proofs and other computational reasoning.
(Show Context)

Citation Context

...ofs [16]. Recently I have written an ML package to automate recursive definitions in Isabelle ZF [24]. My package is inspired by T. Melham’s inductive definition packages for the Cambridge HOL system =-=[5, 15]-=-. It is unusually flexible because of its explicit use of the Knaster-Tarski Theorem. Monotone operators may occur in the introduction rules, such as the occurrence of list in the definition of term(A...

A HOL extension of GNY for automatically analyzing cryptographic protocol,”

by S H Brackin - in Proceedings of the 9th IEEEWorkshop on Computer Security Foundations (CSFW ’96), , 1996
"... ..."
Abstract - Cited by 30 (2 self) - Add to MetaCart
Abstract not found
(Show Context)

Citation Context

..., protocol defines a relation BGNY that maps objects regarded as statements to truth values; the rules defining BGNY are analogous to the rules in the GNY logic. The HOL inductive definitions package =-=[10] proves th-=-at the relation BGNY exists but what, if anything, BGNY's having value "true" on a particular statement means is open to argument, as is any other inference based on a belief logic. Using re...

Generic Automatic Proof Tools

by Lawrence C. Paulson , 1997
"... This article explores a synthesis between two distinct traditions in automated reasoning: resolution and interaction. In particular it discusses Isabelle, an interactive theorem prover based upon a form of resolution. It aims to demonstrate the value of proof tools that, compared with traditional re ..."
Abstract - Cited by 29 (11 self) - Add to MetaCart
This article explores a synthesis between two distinct traditions in automated reasoning: resolution and interaction. In particular it discusses Isabelle, an interactive theorem prover based upon a form of resolution. It aims to demonstrate the value of proof tools that, compared with traditional resolution systems, seem absurdly limited. Isabelle's classical reasoner searches for proofs using a tableau approach. The reasoner is generic: it accepts rules proved in applied theories, involving defined connectives. The reasoner works in a variety of domains without reducing them to first-order logic. Resolution systems such as Otter [13], setheo [11] and pttp [34] represent automatic theorem proving at its highest point of refinement. They achieve extremely high inference rates and can run continuously for days without running out of storage. They can crack many of the toughest challenge problems that have been circulated. While they exploit many specialized algorithms, data structures and optimizations, they rely crucially on unification. Interactive systems let the user direct each step of the proof. They can implement complicated formalisms, chosen for maximum expressiveness, and typically based on the typed -calculus. hol [7, 8] and pvs [23] are used for verification of hardware and real-time systems, while Coq [4] is used for formalizing mathematics. Large numbers of axioms --- say, the description of a cpu design --- do not overwhelm them, because finding the proof is the user's job. Partial automation is sometimes provided, but a resolution enthusiast would regret the lack of uniform search procedures based on unification. One procedure provided by most interactive provers is rewriting. Rewrite rules have many advantages. Unlike programmed inference rules, they are ...

A structural proof of the soundness of rely/guarantee rules

by Joey W. Coleman, Cliff B. Jones - Journal of Logic and Computation , 2007
"... Abstract. Various forms of rely/guarantee conditions have been used to record and reason about interference in ways that provide compositional development methods for concurrent programs. This paper illustrates such a set of rules and proves their soundness. The underlying concurrent language allows ..."
Abstract - Cited by 28 (13 self) - Add to MetaCart
Abstract. Various forms of rely/guarantee conditions have been used to record and reason about interference in ways that provide compositional development methods for concurrent programs. This paper illustrates such a set of rules and proves their soundness. The underlying concurrent language allows fine-grained interleaving and nested concurrency; it is defined by an operational semantics; the proof that the rely/guarantee rules are consistent with that semantics (including termination) is by a structural induction. A key lemma which relates the states which can arise from the extra interference that results from taking a portion of the program out of context makes it possible to do the proofs without having to perform induction over the computation history. This lemma also offers a way to think about expressibility issues around auxiliary variables in rely/guarantee conditions. 1
(Show Context)

Citation Context

...ic) reference is [dR01]. An annotated list of publications on rely/guarantee concepts can be found at http://homepages.cs.ncl.ac.uk/cliff.jones/home.formalunderlying logic follows that of Tom Melham =-=[CM92]-=- and Tobias Nipkow [KNvO+ 02] which were presumably influenced by [BH88]: the rules of an operational semantics can be taken to provide an inductive definition of a relation ( s −→) over “configuratio...

A HOL basis for reasoning about functional programs

by Sten Agerholm , 1994
"... ..."
Abstract - Cited by 24 (6 self) - Add to MetaCart
Abstract not found

Isabelle's Object-Logics

by Lawrence C. Paulson , 1997
"... ..."
Abstract - Cited by 23 (2 self) - Add to MetaCart
Abstract not found

A Fixedpoint Approach to (Co)Inductive and (Co)Datatype Definitions

by Lawrence C. Paulson , 1997
"... This paper presents a fixedpoint approach to inductive definitions. Instead of using a syntactic test such as "strictly positive," the approach lets definitions involve any operators that have been proved monotone. It is conceptually simple, which has allowed the easy implementation of ..."
Abstract - Cited by 23 (3 self) - Add to MetaCart
This paper presents a fixedpoint approach to inductive definitions. Instead of using a syntactic test such as "strictly positive," the approach lets definitions involve any operators that have been proved monotone. It is conceptually simple, which has allowed the easy implementation of mutual recursion and iterated definitions. It also handles coinductive definitions: simply replace the least fixedpoint by a greatest fixedpoint. The method
(Show Context)

Citation Context

...n inductive definition of a reduction or evaluation relation on programs. A few theorem provers provide commands for formalizing inductive definitions; these include Coq [22] and again the hol system =-=[5]-=-. The dual notion is that of a coinductive definition. Such a definition specifies the greatest set R consistent with given rules: every element of R can be seen as arising by applying a rule to eleme...

Trustworthy Tools for Trustworthy Programs: A Verified Verification Condition Generator

by Peter V. Homeier, David F. Martin , 1994
"... Verification Condition Generator (VCG) tools have been effective in simplifying the task of proving programs correct. However, in the past these VCG tools have in general not themselves been mechanically proven, so any proof using and depending on these VCGs might have contained errors. In our w ..."
Abstract - Cited by 23 (1 self) - Add to MetaCart
Verification Condition Generator (VCG) tools have been effective in simplifying the task of proving programs correct. However, in the past these VCG tools have in general not themselves been mechanically proven, so any proof using and depending on these VCGs might have contained errors. In our work, we define and rigorously prove correct a VCG tool within the HOL theorem proving system, for a standard while-loop language, with one new feature not usually treated: expressions with side effects. Starting from a structural operational semantics of this programming language, we prove as theorems the axioms and rules of inference of a Hoare-style axiomatic semantics, verifying their soundness. This axiomatic semantics is then used to define and prove correct a VCG tool for this language. Finally, this verified VCG is applied to an example program to verify its correctness.

Hybrid Interactive Theorem Proving using Nuprl and HOL

by Amy P. Felty, Douglas J. Howe - IN MCCUNE [1997 , 1997
"... In this paper we give the first example of a significant piece of formal mathematics conducted in a hybrid of two different interactive systems. We constructively prove a theorem in Nuprl, from which a program can be extracted, but we use classical mathematics imported from HOL, and a connectio ..."
Abstract - Cited by 15 (1 self) - Add to MetaCart
In this paper we give the first example of a significant piece of formal mathematics conducted in a hybrid of two different interactive systems. We constructively prove a theorem in Nuprl, from which a program can be extracted, but we use classical mathematics imported from HOL, and a connection to some of HOL's definitional packages, for parts of the proof that do not contribute to the program.
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University