Results 1  10
of
1,724
On limits of wireless communications in a fading environment when using multiple antennas
 Wireless Personal Communications
, 1998
"... Abstract. This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bitrates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multielement array (M ..."
Abstract

Cited by 2363 (14 self)
 Add to MetaCart
Abstract. This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bitrates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multielement array (MEA) technology, that is processing the spatial dimension (not just the time dimension) to improve wireless capacities in certain applications. Specifically, we present some basic information theory results that promise great advantages of using MEAs in wireless LANs and building to building wireless communication links. We explore the important case when the channel characteristic is not available at the transmitter but the receiver knows (tracks) the characteristic which is subject to Rayleigh fading. Fixing the overall transmitted power, we express the capacity offered by MEA technology and we see how the capacity scales with increasing SNR for a large but practical number, n, of antenna elements at both transmitter and receiver. We investigate the case of independent Rayleigh faded paths between antenna elements and find that with high probability extraordinary capacity is available. Compared to the baseline n = 1 case, which by Shannon’s classical formula scales as one more bit/cycle for every 3 dB of signaltonoise ratio (SNR) increase, remarkably with MEAs, the scaling is almost like n more bits/cycle for each 3 dB increase in SNR. To illustrate how great this capacity is, even for small n, take the cases n = 2, 4 and 16 at an average received SNR of 21 dB. For over 99%
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sumproduct algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform algorithms.
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The decoding of both codes can be tackled with a practical sumproduct algorithm. We prove that these codes are "very good," in that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit. This result holds not only for the binarysymmetric channel but also for any channel with symmetric stationary ergodic noise. We give experimental results for binarysymmetric channels and Gaussian channels demonstrating that practical performance substantially better than that of standard convolutional and concatenated codes can be achieved; indeed, the performance of Gallager codes is almost as close to the Shannon limit as that of turbo codes.
Loopy Belief Propagation for Approximate Inference: An Empirical Study
 In Proceedings of Uncertainty in AI
, 1999
"... Recently, researchers have demonstrated that "loopy belief propagation"  the use of Pearl's polytree algorithm in a Bayesian network with loops  can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performa ..."
Abstract

Cited by 680 (18 self)
 Add to MetaCart
(Show Context)
Recently, researchers have demonstrated that "loopy belief propagation"  the use of Pearl's polytree algorithm in a Bayesian network with loops  can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performance of "Turbo Codes"  codes whose decoding algorithm is equivalent to loopy belief propagation in a chainstructured Bayesian network. In this paper we ask: is there something special about the errorcorrecting code context, or does loopy propagation work as an approximate inference scheme in a more general setting? We compare the marginals computed using loopy propagation to the exact ones in four Bayesian network architectures, including two realworld networks: ALARM and QMR. We find that the loopy beliefs often converge and when they do, they give a good approximation to the correct marginals. However, on the QMR network, the loopy beliefs oscillated and had no obvious relationship ...
Constructing Free Energy Approximations and Generalized Belief Propagation Algorithms
 IEEE Transactions on Information Theory
, 2005
"... Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems t ..."
Abstract

Cited by 586 (13 self)
 Add to MetaCart
(Show Context)
Important inference problems in statistical physics, computer vision, errorcorrecting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems that is exact when the factor graph is a tree, but only approximate when the factor graph has cycles. We show that BP fixed points correspond to the stationary points of the Bethe approximation of the free energy for a factor graph. We explain how to obtain regionbased free energy approximations that improve the Bethe approximation, and corresponding generalized belief propagation (GBP) algorithms. We emphasize the conditions a free energy approximation must satisfy in order to be a “valid ” or “maxentnormal ” approximation. We describe the relationship between four different methods that can be used to generate valid approximations: the “Bethe method, ” the “junction graph method, ” the “cluster variation method, ” and the “region graph method.” Finally, we explain how to tell whether a regionbased approximation, and its corresponding GBP algorithm, is likely to be accurate, and describe empirical results showing that GBP can significantly outperform BP.
Design of capacityapproaching irregular lowdensity paritycheck codes
 IEEE TRANS. INFORM. THEORY
, 2001
"... We design lowdensity paritycheck (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on [1]. Assuming that the unde ..."
Abstract

Cited by 581 (6 self)
 Add to MetaCart
(Show Context)
We design lowdensity paritycheck (LDPC) codes that perform at rates extremely close to the Shannon capacity. The codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides. Our theoretical analysis of the codes is based on [1]. Assuming that the underlying communication channel is symmetric, we prove that the probability densities at the message nodes of the graph possess a certain symmetry. Using this symmetry property we then show that, under the assumption of no cycles, the message densities always converge as the number of iterations tends to infinity. Furthermore, we prove a stability condition which implies an upper bound on the fraction of errors that a beliefpropagation decoder can correct when applied to a code induced from a bipartite graph with a given degree distribution. Our codes are found by optimizing the degree structure of the underlying graphs. We develop several strategies to perform this optimization. We also present some simulation results for the codes found which show that the performance of the codes is very close to the asymptotic theoretical bounds.
The Capacity of LowDensity ParityCheck Codes Under MessagePassing Decoding
, 2001
"... In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chos ..."
Abstract

Cited by 569 (9 self)
 Add to MetaCart
In this paper, we present a general method for determining the capacity of lowdensity paritycheck (LDPC) codes under messagepassing decoding when used over any binaryinput memoryless channel with discrete or continuous output alphabets. Transmitting at rates below this capacity, a randomly chosen element of the given ensemble will achieve an arbitrarily small target probability of error with a probability that approaches one exponentially fast in the length of the code. (By concatenating with an appropriate outer code one can achieve a probability of error that approaches zero exponentially fast in the length of the code with arbitrarily small loss in rate.) Conversely, transmitting at rates above this capacity the probability of error is bounded away from zero by a strictly positive constant which is independent of the length of the code and of the number of iterations performed. Our results are based on the observation that the concentration of the performance of the decoder around its average performance, as observed by Luby et al. [1] in the case of a binarysymmetric channel and a binary messagepassing algorithm, is a general phenomenon. For the particularly important case of beliefpropagation decoders, we provide an effective algorithm to determine the corresponding capacity to any desired degree of accuracy. The ideas presented in this paper are broadly applicable and extensions of the general method to lowdensity paritycheck codes over larger alphabets, turbo codes, and other concatenated coding schemes are outlined.
Near Shannon limit performance of lowdensity paritycheck codes
 Electronics Letters
, 1996
"... ..."
(Show Context)
Iterative (turbo) soft interference cancellation and decoding for coded CDMA
 IEEE Trans. Commun
, 1999
"... Abstract — The presence of both multipleaccess interference (MAI) and intersymbol interference (ISI) constitutes a major impediment to reliable communications in multipath codedivision multipleaccess (CDMA) channels. In this paper, an iterative receiver structure is proposed for decoding multiuse ..."
Abstract

Cited by 446 (18 self)
 Add to MetaCart
Abstract — The presence of both multipleaccess interference (MAI) and intersymbol interference (ISI) constitutes a major impediment to reliable communications in multipath codedivision multipleaccess (CDMA) channels. In this paper, an iterative receiver structure is proposed for decoding multiuser information data in a convolutionally coded asynchronous multipath DSCDMA system. The receiver performs two successive softoutput decisions, achieved by a softinput softoutput (SISO) multiuser detector and a bank of singleuser SISO channel decoders, through an iterative process. At each iteration, extrinsic information is extracted from detection and decoding stages and is then used as a priori information in the next iteration, just as in Turbo decoding. Given the multipath CDMA channel model, a direct implementation of a slidingwindow SISO multiuser detector has a prohibitive computational complexity. A lowcomplexity SISO multiuser detector is developed based on a novel nonlinear interference suppression technique, which makes use of both soft interference cancellation and instantaneous linear minimum meansquare error filtering. The properties of such a nonlinear interference suppressor are examined, and an efficient recursive implementation is derived. Simulation results demonstrate that the proposed lowcomplexity iterative receiver structure for interference suppression and decoding offers significant performance gain over the traditional noniterative receiver structure. Moreover, at high signaltonoise ratio, the detrimental effects of MAI and ISI in the channel can almost be completely overcome by iterative processing, and singleuser performance can be approached. Index Terms — Coded CDMA, instantaneous MMSE filtering, multiuser detection, soft interference cancellation, Turbo processing.
Turbo decoding as an instance of Pearl’s belief propagation algorithm
 IEEE Journal on Selected Areas in Communications
, 1998
"... Abstract—In this paper, we will describe the close connection between the now celebrated iterative turbo decoding algorithm of Berrou et al. and an algorithm that has been well known in the artificial intelligence community for a decade, but which is relatively unknown to information theorists: Pear ..."
Abstract

Cited by 420 (16 self)
 Add to MetaCart
(Show Context)
Abstract—In this paper, we will describe the close connection between the now celebrated iterative turbo decoding algorithm of Berrou et al. and an algorithm that has been well known in the artificial intelligence community for a decade, but which is relatively unknown to information theorists: Pearl’s belief propagation algorithm. We shall see that if Pearl’s algorithm is applied to the “belief network ” of a parallel concatenation of two or more codes, the turbo decoding algorithm immediately results. Unfortunately, however, this belief diagram has loops, and Pearl only proved that his algorithm works when there are no loops, so an explanation of the excellent experimental performance of turbo decoding is still lacking. However, we shall also show that Pearl’s algorithm can be used to routinely derive previously known iterative, but suboptimal, decoding algorithms for a number of other errorcontrol systems, including Gallager’s