Results 1  10
of
997
Classical negation in logic programs and disjunctive databases
 New Generation Computing
, 1991
"... An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic progra ..."
Abstract

Cited by 1044 (73 self)
 Add to MetaCart
An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negationasfailure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available. Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter. 1
Logical foundations of objectoriented and framebased languages
 JOURNAL OF THE ACM
, 1995
"... We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, ..."
Abstract

Cited by 876 (65 self)
 Add to MetaCart
(Show Context)
We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, encapsulation, and others. In a sense, Flogic stands in the same relationship to the objectoriented paradigm as classical predicate calculus stands to relational programming. Flogic has a modeltheoretic semantics and a sound and complete resolutionbased proof theory. A small number of fundamental concepts that come from objectoriented programming have direct representation in Flogic; other, secondary aspects of this paradigm are easily modeled as well. The paper also discusses semantic issues pertaining to programming with a deductive objectoriented language based on a subset of Flogic.
Abduction in Logic Programming
"... Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over th ..."
Abstract

Cited by 624 (77 self)
 Add to MetaCart
(Show Context)
Abduction in Logic Programming started in the late 80s, early 90s, in an attempt to extend logic programming into a framework suitable for a variety of problems in Artificial Intelligence and other areas of Computer Science. This paper aims to chart out the main developments of the field over the last ten years and to take a critical view of these developments from several perspectives: logical, epistemological, computational and suitability to application. The paper attempts to expose some of the challenges and prospects for the further development of the field.
The DLV System for Knowledge Representation and Reasoning
 ACM Transactions on Computational Logic
, 2002
"... Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believ ..."
Abstract

Cited by 456 (102 self)
 Add to MetaCart
Disjunctive Logic Programming (DLP) is an advanced formalism for knowledge representation and reasoning, which is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class ΣP 2 (NPNP). Thus, under widely believed assumptions, DLP is strictly more expressive than normal (disjunctionfree) logic programming, whose expressiveness is limited to properties decidable in NP. Importantly, apart from enlarging the class of applications which can be encoded in the language, disjunction often allows for representing problems of lower complexity in a simpler and more natural fashion. This paper presents the DLV system, which is widely considered the stateoftheart implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, functionfree disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to ∆P 3complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of
Extending and Implementing the Stable Model Semantics
, 2002
"... A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities ..."
Abstract

Cited by 396 (9 self)
 Add to MetaCart
A novel logic program like language, weight constraint rules, is developed for answer set programming purposes. It generalizes normal logic programs by allowing weight constraints in place of literals to represent, e.g., cardinality and resource constraints and by providing optimization capabilities. A declarative semantics is developed which extends the stable model semantics of normal programs. The computational complexity of the language is shown to be similar to that of normal programs under the stable model semantics. A simple embedding of general weight constraint rules to a small subclass of the language called basic constraint rules is devised. An implementation of the language, the smodels system, is developed based on this embedding. It uses a two level architecture consisting of a frontend and a kernel language implementation. The frontend allows restricted use of variables and functions and compiles general weight constraint rules to basic constraint rules. A major part of the work is the development of an ecient search procedure for computing stable models for this kernel language. The procedure is compared with and empirically tested against satis ability checkers and an implementation of the stable model semantics. It offers a competitive implementation of the stable model semantics for normal programs and attractive performance for problems where the new types of rules provide a compact representation.
Logic Programs with Stable Model Semantics as a Constraint Programming Paradigm
"... ..."
(Show Context)
Complexity and Expressive Power of Logic Programming
, 1997
"... This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results ..."
Abstract

Cited by 366 (57 self)
 Add to MetaCart
(Show Context)
This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results on plain logic programming (pure Horn clause programs), more recent results on various important extensions of logic programming are surveyed. These include logic programming with different forms of negation, disjunctive logic programming, logic programming with equality, and constraint logic programming. The complexity of the unification problem is also addressed.
Tabled Evaluation with Delaying for General Logic Programs
, 1996
"... SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evalu ..."
Abstract

Cited by 304 (29 self)
 Add to MetaCart
SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evaluation for three reasons: a) it may not terminate due to infinite positive recursion; b) it may not terminate due to infinite recursion through negation; c) it may repeatedly evaluate the same literal in a rule body, leading to unacceptable performance. We address three problems fir a goaloriented query evaluation of general logic programs by presenting tabled evaluation with delaying (SLG resolution).
Smodels  an Implementation of the Stable Model and WellFounded Semantics for Normal Logic Programs
, 1997
"... The Smodels system is a C++ implementation of the wellfounded and stable model semantics for rangerestricted functionfree normal programs. The system includes two modules: (i) smodels which implements the two semantics for ground programs and (ii) parse which computes a grounded version of a range ..."
Abstract

Cited by 294 (9 self)
 Add to MetaCart
The Smodels system is a C++ implementation of the wellfounded and stable model semantics for rangerestricted functionfree normal programs. The system includes two modules: (i) smodels which implements the two semantics for ground programs and (ii) parse which computes a grounded version of a rangerestricted functionfree normal program. The latter module does not produce the whole set of ground instances of the program but a subset that is sufficient in the sense that no stable models are lost. The implementation of the stable model semantics for ground programs is based on bottomup backtracking search where a powerful pruning method is employed. The pruning method exploits an approximation technique for stable models which is closely related to the wellfounded semantics. One of the advantages of this novel technique is that it can be implemented to work in linear space. This makes it possible to apply the stable model semantics also in areas where resulting programs are highly n...