Results 11  20
of
814
SybilLimit: A nearoptimal social network defense against sybil attacks
 2008 [Online]. Available: http://www.comp.nus.edu.sg/~yuhf/sybillimittr.pdf
"... Abstract—Openaccess distributed systems such as peertopeer systems are particularly vulnerable to sybil attacks, where a malicious user creates multiple fake identities (called sybil nodes). Without a trusted central authority that can tie identities to real human beings, defending against sybil ..."
Abstract

Cited by 213 (7 self)
 Add to MetaCart
(Show Context)
Abstract—Openaccess distributed systems such as peertopeer systems are particularly vulnerable to sybil attacks, where a malicious user creates multiple fake identities (called sybil nodes). Without a trusted central authority that can tie identities to real human beings, defending against sybil attacks is quite challenging. Among the small number of decentralized approaches, our recent SybilGuard protocol leverages a key insight on social networks to bound the number of sybil nodes accepted. Despite its promising direction, SybilGuard can allow a large number of sybil nodes to be accepted. Furthermore, SybilGuard assumes that social networks are fastmixing, which has never been confirmed in the real world. This paper presents the novel SybilLimit protocol that leverages the same insight as SybilGuard, but offers dramatically improved and nearoptimal guarantees. The number of sybil nodes accepted is reduced by a factor of 2 ( p n), or around 200 times in our experiments for a millionnode system. We further prove that SybilLimit’s guarantee is at most a log n factor away from optimal when considering approaches based on fastmixing social networks. Finally, based on three largescale realworld social networks, we provide the first evidence that realworld social networks are indeed fastmixing. This validates the fundamental assumption behind SybilLimit’s and SybilGuard’s approach. Index Terms—Social networks, sybil attack, sybil identities, SybilGuard, SybilLimit. I.
Symphony: Distributed Hashing in a Small World
 IN PROCEEDINGS OF THE 4TH USENIX SYMPOSIUM ON INTERNET TECHNOLOGIES AND SYSTEMS
, 2003
"... We present Symphony, a novel protocol for maintaining distributed hash tables in a wide area network. The key idea is to arrange all participants along a ring and equip them with long distance contacts drawn from a family of harmonic distributions. Through simulation, we demonstrate that our constr ..."
Abstract

Cited by 210 (13 self)
 Add to MetaCart
(Show Context)
We present Symphony, a novel protocol for maintaining distributed hash tables in a wide area network. The key idea is to arrange all participants along a ring and equip them with long distance contacts drawn from a family of harmonic distributions. Through simulation, we demonstrate that our construction is scalable, flexible, stable in the presence of frequent updates and offers small average latency with only a handful of long distance links per node. The cost of updates when hosts join and leave is small.
SmallWorld Phenomena and the Dynamics of Information
 In Advances in Neural Information Processing Systems (NIPS) 14
, 2001
"... Introduction The problem of searching for information in networks like the World Wide Web can be approached in a variety of ways, ranging from centralized indexing schemes to decentralized mechanisms that navigate the underlying network without knowledge of its global structure. The decentralized ap ..."
Abstract

Cited by 176 (5 self)
 Add to MetaCart
(Show Context)
Introduction The problem of searching for information in networks like the World Wide Web can be approached in a variety of ways, ranging from centralized indexing schemes to decentralized mechanisms that navigate the underlying network without knowledge of its global structure. The decentralized approach appears in a variety of settings: in the behavior of users browsing the Web by following hyperlinks; in the design of focused crawlers [4, 5, 8] and other agents that explore the Web's links to gather information; and in the search protocols underlying decentralized peertopeer systems such as Gnutella [10], Freenet [7], and recent research prototypes [21, 22, 23], through which users can share resources without a central server. In recent work, we have been investigating the problem of decentralized search in large information networks [14, 15]. Our initial motivation was an experiment that dealt directly with the search problem in a decidedly preInternet context: Stanley Milgram
Novel Architectures for P2P Applications: the ContinuousDiscrete Approach
 ACM TRANSACTIONS ON ALGORITHMS
, 2007
"... We propose a new approach for constructing P2P networks based on a dynamic decomposition of a continuous space into cells corresponding to processors. We demonstrate the power of these design rules by suggesting two new architectures, one for DHT (Distributed Hash Table) and the other for dynamic ex ..."
Abstract

Cited by 166 (8 self)
 Add to MetaCart
(Show Context)
We propose a new approach for constructing P2P networks based on a dynamic decomposition of a continuous space into cells corresponding to processors. We demonstrate the power of these design rules by suggesting two new architectures, one for DHT (Distributed Hash Table) and the other for dynamic expander networks. The DHT network, which we call Distance Halving, allows logarithmic routing and load, while preserving constant degrees. Our second construction builds a network that is guaranteed to be an expander. The resulting topologies are simple to maintain and implement. Their simplicity makes it easy to modify and add protocols. We show it is possible to reduce the dilation and the load of the DHT with a small increase of the degree. We present a provably good protocol for relieving hot spots and a construction with high fault tolerance. Finally we show that, using our approach, it is possible to construct any family of constant degree graphs in a dynamic environment, though with worst parameters. Therefore we expect that more distributed data structures could be designed and implemented in a dynamic environment.
Graph mining: laws, generators, and algorithms
 ACM COMPUT SURV (CSUR
, 2006
"... How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in ..."
Abstract

Cited by 132 (7 self)
 Add to MetaCart
How does the Web look? How could we tell an abnormal social network from a normal one? These and similar questions are important in many fields where the data can intuitively be cast as a graph; examples range from computer networks to sociology to biology and many more. Indeed, any M: N relation in database terminology can be represented as a graph. A lot of these questions boil down to the following: “How can we generate synthetic but realistic graphs? ” To answer this, we must first understand what patterns are common in realworld graphs and can thus be considered a mark of normality/realism. This survey give an overview of the incredible variety of work that has been done on these problems. One of our main contributions is the integration of points of view from physics, mathematics, sociology, and computer science. Further, we briefly describe recent advances on some related and interesting graph problems.
Find me if you can: improving geographical prediction with social and spatial proximity.
 In WWW ’10: Proceedings of the 19th International Conference on World Wide Web,
, 2010
"... ABSTRACT Geography and social relationships are inextricably intertwined; the people we interact with on a daily basis almost always live near us. As people spend more time online, data regarding these two dimensions geography and social relationships are becoming increasingly precise, allowing u ..."
Abstract

Cited by 128 (4 self)
 Add to MetaCart
(Show Context)
ABSTRACT Geography and social relationships are inextricably intertwined; the people we interact with on a daily basis almost always live near us. As people spend more time online, data regarding these two dimensions geography and social relationships are becoming increasingly precise, allowing us to build reliable models to describe their interaction. These models have important implications in the design of locationbased services, security intrusion detection, and social media supporting local communities. Using usersupplied address data and the network of associations between members of the Facebook social network, we can directly observe and measure the relationship between geography and friendship. Using these measurements, we introduce an algorithm that predicts the location of an individual from a sparse set of located users with performance that exceeds IPbased geolocation. This algorithm is efficient and scalable, and could be run on a network containing hundreds of millions of users.
Kronecker Graphs: An Approach to Modeling Networks
 JOURNAL OF MACHINE LEARNING RESEARCH 11 (2010) 9851042
, 2010
"... How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the ei ..."
Abstract

Cited by 123 (3 self)
 Add to MetaCart
(Show Context)
How can we generate realistic networks? In addition, how can we do so with a mathematically tractable model that allows for rigorous analysis of network properties? Real networks exhibit a long list of surprising properties: Heavy tails for the in and outdegree distribution, heavy tails for the eigenvalues and eigenvectors, small diameters, and densification and shrinking diameters over time. Current network models and generators either fail to match several of the above properties, are complicated to analyze mathematically, or both. Here we propose a generative model for networks that is both mathematically tractable and can generate networks that have all the above mentioned structural properties. Our main idea here is to use a nonstandard matrix operation, the Kronecker product, to generate graphs which we refer to as “Kronecker graphs”. First, we show that Kronecker graphs naturally obey common network properties. In fact, we rigorously prove that they do so. We also provide empirical evidence showing that Kronecker graphs can effectively model the structure of real networks. We then present KRONFIT, a fast and scalable algorithm for fitting the Kronecker graph generation model to large real networks. A naive approach to fitting would take superexponential
A General Model of Web Graphs
, 2003
"... We describe a very general model of a random graph process whose proportional degree sequence obeys a power law. Such laws have recently been observed in graphs associated with the world wide web. ..."
Abstract

Cited by 119 (6 self)
 Add to MetaCart
(Show Context)
We describe a very general model of a random graph process whose proportional degree sequence obeys a power law. Such laws have recently been observed in graphs associated with the world wide web.
Complex Networks and Decentralized Search Algorithms
 In Proceedings of the International Congress of Mathematicians (ICM
, 2006
"... The study of complex networks has emerged over the past several years as a theme spanning many disciplines, ranging from mathematics and computer science to the social and biological sciences. A significant amount of recent work in this area has focused on the development of random graph models that ..."
Abstract

Cited by 112 (1 self)
 Add to MetaCart
(Show Context)
The study of complex networks has emerged over the past several years as a theme spanning many disciplines, ranging from mathematics and computer science to the social and biological sciences. A significant amount of recent work in this area has focused on the development of random graph models that capture some of the qualitative properties observed in largescale network data; such models have the potential to help us reason, at a general level, about the ways in which realworld networks are organized. We survey one particular line of network research, concerned with smallworld phenomena and decentralized search algorithms, that illustrates this style of analysis. We begin by describing a wellknown experiment that provided the first empirical basis for the "six degrees of separation" phenomenon in social networks; we then discuss some probabilistic network models motivated by this work, illustrating how these models lead to novel algorithmic and graphtheoretic questions, and how they are supported by recent empirical studies of large social networks.
Constrained Random Walks on Random Graphs: Routing Algorithms for Large Scale Wireless Sensor Networks
, 2002
"... We consider a routing problem in the context of large scale networks with uncontrolled dynamics. A case of uncontrolled dynamics that has been studied extensively is that of mobile nodes, as this is typically the case in cellular and mobile adhoc networks. In this paper however we study routing in ..."
Abstract

Cited by 109 (3 self)
 Add to MetaCart
We consider a routing problem in the context of large scale networks with uncontrolled dynamics. A case of uncontrolled dynamics that has been studied extensively is that of mobile nodes, as this is typically the case in cellular and mobile adhoc networks. In this paper however we study routing in the presence of a different type of dynamics: nodes do not move, but instead switch between active and inactive states at random times. Our interest in this case is motivated by the behavior of sensor nodes powered by renewable sources, such as solar cells or ambient vibrations. In this paper we formalize the corresponding routing problem as a problem of constructing suitably constrained random walks on random dynamic graphs. We argue that these random walks should be designed so that their resulting invariant distribution achieves a certain load balancing property, and we give simple distributed algorithms to compute the local parameters for the random walks that achieve the sought behavior. A truly novel feature of our formulation is that the algorithms we obtain are able to route messages along all possible routes between a source and a destination node, without performing explicit route discovery/repair computations, and without maintaining explicit state information about available routes at the nodes. To the best of our knowledge, these are the first algorithms that achieve true multipath routing (in a statistical sense), at the complexity of simple stateless operations.