Results 1 - 10
of
270
The 2005 pascal visual object classes challenge
, 2006
"... Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and peop ..."
Abstract
-
Cited by 649 (23 self)
- Add to MetaCart
(Show Context)
Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved. 1
Human detection using oriented histograms of flow and appearance
- In ECCV
, 2006
"... Abstract. Detecting humans in films and videos is a challenging problem owing to the motion of the subjects, the camera and the background and to variations in pose, appearance, clothing, illumination and background clutter. We develop a detector for standing and moving people in videos with possibl ..."
Abstract
-
Cited by 283 (20 self)
- Add to MetaCart
(Show Context)
Abstract. Detecting humans in films and videos is a challenging problem owing to the motion of the subjects, the camera and the background and to variations in pose, appearance, clothing, illumination and background clutter. We develop a detector for standing and moving people in videos with possibly moving cameras and backgrounds, testing several different motion coding schemes and showing empirically that orientated histograms of differential optical flow give the best overall performance. These motion-based descriptors are combined with our Histogram of Oriented Gradient appearance descriptors. The resulting detector is tested on several databases including a challenging test set taken from feature films and containing wide ranges of pose, motion and background variations, including moving cameras and backgrounds. We validate our results on two challenging test sets containing more than 4400 human examples. The combined detector reduces the false alarm rate by a factor of 10 relative to the best appearance-based detector, for example giving false alarm rates of 1 per 20,000 windows tested at 8 % miss rate on our Test Set 1. 1
Pedestrian Detection: An Evaluation of the State of the Art
- SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1
"... Pedestrian detection is a key problem in computer vision, with several applications that have the potential to positively impact quality of life. In recent years, the number of approaches to detecting pedestrians in monocular images has grown steadily. However, multiple datasets and widely varying e ..."
Abstract
-
Cited by 174 (10 self)
- Add to MetaCart
Pedestrian detection is a key problem in computer vision, with several applications that have the potential to positively impact quality of life. In recent years, the number of approaches to detecting pedestrians in monocular images has grown steadily. However, multiple datasets and widely varying evaluation protocols are used, making direct comparisons difficult. To address these shortcomings, we perform an extensive evaluation of the state of the art in a unified framework. We make three primary contributions: (1) we put together a large, well-annotated and realistic monocular pedestrian detection dataset and study the statistics of the size, position and occlusion patterns of pedestrians in urban scenes, (2) we propose a refined per-frame evaluation methodology that allows us to carry out probing and informative comparisons, including measuring performance in relation to scale and occlusion, and (3) we evaluate the performance of sixteen pre-trained state-of-the-art detectors across six datasets. Our study allows us to assess the state of the art and provides a framework for gauging future efforts. Our experiments show that despite significant progress, performance still has much room for improvement. In particular, detection is disappointing at low resolutions and for partially occluded pedestrians.
Human Detection via Classification on Riemannian Manifolds
- IN IEEE CONF. COMP. VISION AND PATTERN RECOGNITION (CVPR
, 2007
"... We present a new algorithm to detect humans in still images utilizing covariance matrices as object descriptors. Since these descriptors do not lie on a vector space, well known machine learning techniques are not adequate to learn the classifiers. The space of d-dimensional nonsin-gular covariance ..."
Abstract
-
Cited by 170 (7 self)
- Add to MetaCart
We present a new algorithm to detect humans in still images utilizing covariance matrices as object descriptors. Since these descriptors do not lie on a vector space, well known machine learning techniques are not adequate to learn the classifiers. The space of d-dimensional nonsin-gular covariance matrices can be represented as a connected Riemannian manifold. We present a novel approach for classifying points lying on a Riemannian manifold by incorporating the a priori information about the geometry of the space. The algorithm is tested on INRIA human database where superior detection rates are observed over the previous approaches.
Monocular Pedestrian Detection: Survey and Experiments
, 2008
"... Pedestrian detection is a rapidly evolving area in computer vision with key applications in intelligent vehicles, surveillance and advanced robotics. The objective of this paper is to provide an overview of the current state of the art from both methodological and experimental perspective. The first ..."
Abstract
-
Cited by 153 (13 self)
- Add to MetaCart
Pedestrian detection is a rapidly evolving area in computer vision with key applications in intelligent vehicles, surveillance and advanced robotics. The objective of this paper is to provide an overview of the current state of the art from both methodological and experimental perspective. The first part of the paper consists of a survey. We cover the main components of a pedestrian detection system and the underlying models. The second (and larger) part of the paper contains a corresponding experimental study. We consider a diverse set of state-of-the-art systems: wavelet-based AdaBoost cascade [74], HOG/linSVM [11], NN/LRF [75] and combined shape-texture detection [23]. Experiments are performed on an extensive dataset captured on-board a vehicle driving through urban environment. The dataset includes many thousands of training samples as well as a 27 minute test sequence involving more than 20000 images with annotated pedestrian locations. We consider a generic evaluation setting and one specific to pedestrian detection on-board a vehicle. Results indicate a clear advantage of HOG/linSVM at higher image resolutions and lower processing speeds, and a superiority of the wavelet-based AdaBoost cascade approach at lower image resolutions and (near) real-time processing speeds. The dataset (8.5GB) is made public for benchmarking purposes.
Pedestrian Detection Via Classification on Riemannian Manifolds
, 2008
"... Detecting different categories of objects in image and video content is one of the fundamental tasks in computer vision research. The success of many applications such as visual surveillance, image retrieval, robotics, autonomous vehicles, and smart cameras are conditioned on the accuracy of the det ..."
Abstract
-
Cited by 141 (3 self)
- Add to MetaCart
(Show Context)
Detecting different categories of objects in image and video content is one of the fundamental tasks in computer vision research. The success of many applications such as visual surveillance, image retrieval, robotics, autonomous vehicles, and smart cameras are conditioned on the accuracy of the detection process. Two main processing steps can be distinguished in a typical object detection algorithm. The first task is feature extraction, in which the most informative object descriptors regarding the detection process are obtained from the visual content. The second task is detection, in which the obtained object descriptors are utilized in a classification framework to detect the objects of interest. The feature extraction methods can be further categorized into two groups based on the representation. The first group of methods is the sparse representations, where a set of representative local regions is obtained as the result of an interest point detection algorithm. Reliable interest points should encapsulate valuable information about the local image content and remain stable under changes, such as in viewpoint and/or illumination. There exists an extensive literature on interest point detectors, and [14],[18],[21],[25], and [27] are only a few of the most commonly used methods that satisfy consistency over a large range of operating conditions.
Evaluation of features detectors and descriptors based on 3d objects
- IJCV
, 2005
"... We explore the performance of a number of popular feature detectors and descriptors in matching 3D object features across viewpoints and lighting conditions. To this end we design a method, based on intersecting epipolar constraints, for providing ground truth correspondence automatically. We collec ..."
Abstract
-
Cited by 139 (2 self)
- Add to MetaCart
We explore the performance of a number of popular feature detectors and descriptors in matching 3D object features across viewpoints and lighting conditions. To this end we design a method, based on intersecting epipolar constraints, for providing ground truth correspondence automatically. We collect a database of 100 objects viewed from 144 calibrated viewpoints under three different lighting conditions. We find that the combination of Hessian-affine feature finder and SIFT features is most robust to viewpoint change. Harris-affine combined with SIFT and Hessianaffine combined with shape context descriptors were best respectively for lighting changes and scale changes. We also find that no detector-descriptor combination performs well with viewpoint changes of more than 25-30 ◦. 1
Multiple Object Class Detection With a Generative Model
- In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, 2007
"... In this paper we propose an approach capable of simultaneous recognition and localization of multiple object classes using a generative model. A novel hierarchical representation allows to represent individual images as well as various objects classes in a single, scale and rotation invariant model. ..."
Abstract
-
Cited by 128 (12 self)
- Add to MetaCart
(Show Context)
In this paper we propose an approach capable of simultaneous recognition and localization of multiple object classes using a generative model. A novel hierarchical representation allows to represent individual images as well as various objects classes in a single, scale and rotation invariant model. The recognition method is based on a codebook representation where appearance clusters built from edge based features are shared among several object classes. A probabilistic model allows for reliable detection of various objects in the same image. The approach is highly efficient due to fast clustering and matching methods capable of dealing with millions of high dimensional features. The system shows excellent performance on several object categories over a wide range of scales, in-plane rotations, background clutter, and partial occlusions. The performance of the proposed multi-object class detection approach is competitive to state of the art approaches dedicated to a single object class recognition problem. 1.