Results 1 - 10
of
1,888
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract
-
Cited by 1422 (49 self)
- Add to MetaCart
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI-SVM in terms of latent variables. A latent SVM is semi-convex and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.
The science of emotional intelligence
, 2005
"... This article presents a framework for emotiolllJl intelligenCl!, a set of skills hypothesized to contribute to the accurate appraisal and expression of emotion in oneself and in others, the effective regulation of emotion in self and others, and the use of feelings to motivate, plan, and achieve in ..."
Abstract
-
Cited by 887 (38 self)
- Add to MetaCart
(Show Context)
This article presents a framework for emotiolllJl intelligenCl!, a set of skills hypothesized to contribute to the accurate appraisal and expression of emotion in oneself and in others, the effective regulation of emotion in self and others, and the use of feelings to motivate, plan, and achieve in one's life. We start by reviewing the debate about the adaptive versus maladaptive qualities of emotion. We then explore the literature on intelligence, and especiaUy social intelligence. to examine the place of emotion in traditional intelligence conceptions. A framework for integrating the research on emotion-related snUs Is then described. Next, we review the components of emotional intelligence. To conclude the review. the role of emotional intelligence in mental health is discussed and avenues for further investigation are suggested. Is "emotional intelligence " 8 contradiction in terms? One tradition in Western thought has viewed emotions as disorganized interruptions of mental activity, so potentially disruptive that they must be controlled. Writing in the first century B.C., Publilius Syrus stated, "Rule your feelings, lest your feelings rule you " [1}.
Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments
"... Face recognition has benefitted greatly from the many databases that have been produced to study it. Most of these databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as posi ..."
Abstract
-
Cited by 449 (11 self)
- Add to MetaCart
(Show Context)
Face recognition has benefitted greatly from the many databases that have been produced to study it. Most of these databases have been created under controlled conditions to facilitate the study of specific parameters on the face recognition problem. These parameters include such variables as position, pose, lighting, expression, background, camera quality, occlusion, age, and gender. While there are many applications for face recognition technology in which one can control the parameters of image acquisition, there are also many applications in which the practitioner has little or no control over such parameters. This database is provided as an aid in studying the latter, unconstrained, face recognition problem. The database represents an initial attempt to provide a set of labeled face photographs spanning the range of conditions typically encountered by people in their everyday lives. The database exhibits “natural ” variability in pose, lighting, focus, resolution, facial expression, age, gender, race, accessories, make-up, occlusions, background, and photographic quality. Despite this variability, the images in the database are presented in a simple and consistent format for maximum ease of use. In addition to describing the details of the database and its acquisition, we provide specific experimental paradigms for which the database is suitable. This is done in an effort to make research performed with the database as consistent and comparable as possible.
Putting objects in perspective
- In CVPR
, 2006
"... Image understanding requires not only individually estimating elements of the visual world but also capturing the interplay among them. In this paper, we provide a framework for placing local object detection in the context of the overall 3D scene by modeling the interdependence of objects, surface ..."
Abstract
-
Cited by 307 (14 self)
- Add to MetaCart
(Show Context)
Image understanding requires not only individually estimating elements of the visual world but also capturing the interplay among them. In this paper, we provide a framework for placing local object detection in the context of the overall 3D scene by modeling the interdependence of objects, surface orientations, and camera viewpoint. Most object detection methods consider all scales and locations in the image as equally likely. We show that with probabilistic estimates of 3D geometry, both in terms of surfaces and world coordinates, we can put objects into perspective and model the scale and location variance in the image. Our approach reflects the cyclical nature of the problem by allowing probabilistic object hypotheses to refine geometry and vice-versa. Our framework allows painless substitution of almost any object detector and is easily extended to include other aspects of image understanding. Our results confirm the benefits of our integrated approach. 1.
Object recognition with features inspired by visual cortex
- CVPR’05 -Volume
, 2005
"... We introduce a novel set of features for robust object recognition. Each element of this set is a complex feature obtained by combining position- and scale-tolerant edgedetectors over neighboring positions and multiple orientations. Our system’s architecture is motivated by a quantitative model of v ..."
Abstract
-
Cited by 291 (17 self)
- Add to MetaCart
(Show Context)
We introduce a novel set of features for robust object recognition. Each element of this set is a complex feature obtained by combining position- and scale-tolerant edgedetectors over neighboring positions and multiple orientations. Our system’s architecture is motivated by a quantitative model of visual cortex. We show that our approach exhibits excellent recognition performance and outperforms several state-of-the-art systems on a variety of image datasets including many different object categories. We also demonstrate that our system is able to learn from very few examples. The performance of the approach constitutes a suggestive plausibility proof for a class of feedforward models of object recognition in cortex. 1
Geometric context from a single image.
- In Proc. Int. Conf. on Computer Vision.
, 2005
"... ..."
(Show Context)
Integral histogram: A fast way to extract histograms in cartesian spaces,”
- in IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),
, 2005
"... Abstract We present a novel method, which we refer as an integral histogram, to ..."
Abstract
-
Cited by 224 (16 self)
- Add to MetaCart
(Show Context)
Abstract We present a novel method, which we refer as an integral histogram, to
Machine recognition of human activities: A survey
, 2008
"... The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as content-based video annotation and retrieval, highlight extraction and video summarization require recognition of the a ..."
Abstract
-
Cited by 218 (0 self)
- Add to MetaCart
(Show Context)
The past decade has witnessed a rapid proliferation of video cameras in all walks of life and has resulted in a tremendous explosion of video content. Several applications such as content-based video annotation and retrieval, highlight extraction and video summarization require recognition of the activities occurring in the video. The analysis of human activities in videos is an area with increasingly important consequences from security and surveillance to entertainment and personal archiving. Several challenges at various levels of processing—robustness against errors in low-level processing, view and rate-invariant representations at midlevel processing and semantic representation of human activities at higher level processing—make this problem hard to solve. In this review paper, we present a comprehensive survey of efforts in the past couple of decades to address the problems of representation, recognition, and learning of human activities from video and related applications. We discuss the problem at two major levels of complexity: 1) “actions ” and 2) “activities. ” “Actions ” are characterized by simple motion patterns typically executed by a single human. “Activities ” are more complex and involve coordinated actions among a small number of humans. We will discuss several approaches and classify them according to their ability to handle varying degrees of complexity as interpreted above. We begin with a discussion of approaches to model the simplest of action classes known as atomic or primitive actions that do not require sophisticated dynamical modeling. Then, methods to model actions with more complex dynamics are discussed. The discussion then leads naturally to methods for higher level representation of complex activities.
Discriminative models for multi-class object layout
"... Many state-of-the-art approaches for object recognition reduce the problem to a 0-1 classification task. Such reductions allow one to leverage sophisticated classifiers for learning. These models are typically trained independently for each class using positive and negative examples cropped from ima ..."
Abstract
-
Cited by 197 (6 self)
- Add to MetaCart
(Show Context)
Many state-of-the-art approaches for object recognition reduce the problem to a 0-1 classification task. Such reductions allow one to leverage sophisticated classifiers for learning. These models are typically trained independently for each class using positive and negative examples cropped from images. At test-time, various post-processing heuristics such as non-maxima suppression (NMS) are required to reconcile multiple detections within and between different classes for each image. Though crucial to good performance on benchmarks, this post-processing is usually defined heuristically. We introduce a unified model for multi-class object recognition that casts the problem as a structured prediction task. Rather than predicting a binary label for each image