Results 1 - 10
of
3,735
Object Detection with Discriminatively Trained Part Based Models
"... We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their ..."
Abstract
-
Cited by 1422 (49 self)
- Add to MetaCart
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI-SVM in terms of latent variables. A latent SVM is semi-convex and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.
The 2005 pascal visual object classes challenge
, 2006
"... Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and peop ..."
Abstract
-
Cited by 649 (23 self)
- Add to MetaCart
(Show Context)
Abstract. The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved. 1
A discriminatively trained, multiscale, deformable part model
- In IEEE Conference on Computer Vision and Pattern Recognition (CVPR-2008
, 2008
"... This paper describes a discriminatively trained, multiscale, deformable part model for object detection. Our system achieves a two-fold improvement in average precision over the best performance in the 2006 PASCAL person detection challenge. It also outperforms the best results in the 2007 challenge ..."
Abstract
-
Cited by 555 (11 self)
- Add to MetaCart
(Show Context)
This paper describes a discriminatively trained, multiscale, deformable part model for object detection. Our system achieves a two-fold improvement in average precision over the best performance in the 2006 PASCAL person detection challenge. It also outperforms the best results in the 2007 challenge in ten out of twenty categories. The system relies heavily on deformable parts. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL challenge. Our system also relies heavily on new methods for discriminative training. We combine a margin-sensitive approach for data mining hard negative examples with a formalism we call latent SVM. A latent SVM, like a hidden CRF, leads to a non-convex training problem. However, a latent SVM is semi-convex and the training problem becomes convex once latent information is specified for the positive examples. We believe that our training methods will eventually make possible the effective use of more latent information such as hierarchical (grammar) models and models involving latent three dimensional pose. 1.
Locality-constrained linear coding for image classification
- IN: IEEE CONFERENCE ON COMPUTER VISION AND PATTERN CLASSIFICATOIN
, 2010
"... The traditional SPM approach based on bag-of-features (BoF) requires nonlinear classifiers to achieve good image classification performance. This paper presents a simple but effective coding scheme called Locality-constrained Linear Coding (LLC) in place of the VQ coding in traditional SPM. LLC util ..."
Abstract
-
Cited by 443 (20 self)
- Add to MetaCart
(Show Context)
The traditional SPM approach based on bag-of-features (BoF) requires nonlinear classifiers to achieve good image classification performance. This paper presents a simple but effective coding scheme called Locality-constrained Linear Coding (LLC) in place of the VQ coding in traditional SPM. LLC utilizes the locality constraints to project each descriptor into its local-coordinate system, and the projected coordinates are integrated by max pooling to generate the final representation. With linear classifier, the proposed approach performs remarkably better than the traditional nonlinear SPM, achieving state-of-the-art performance on several benchmarks. Compared with the sparse coding strategy [22], the objective function used by LLC has an analytical solution. In addition, the paper proposes a fast approximated LLC method by first performing a K-nearest-neighbor search and then solving a constrained least square fitting problem, bearing computational complexity of O(M + K2). Hence even with very large codebooks, our system can still process multiple frames per second. This efficiency significantly adds to the practical values of LLC for real applications.
Robust object recognition with cortex-like mechanisms
- IEEE Trans. Pattern Analysis and Machine Intelligence
, 2007
"... Abstract—We introduce a new general framework for the recognition of complex visual scenes, which is motivated by biology: We describe a hierarchical system that closely follows the organization of visual cortex and builds an increasingly complex and invariant feature representation by alternating b ..."
Abstract
-
Cited by 389 (47 self)
- Add to MetaCart
(Show Context)
Abstract—We introduce a new general framework for the recognition of complex visual scenes, which is motivated by biology: We describe a hierarchical system that closely follows the organization of visual cortex and builds an increasingly complex and invariant feature representation by alternating between a template matching and a maximum pooling operation. We demonstrate the strength of the approach on a range of recognition tasks: From invariant single object recognition in clutter to multiclass categorization problems and complex scene understanding tasks that rely on the recognition of both shape-based as well as texture-based objects. Given the biological constraints that the system had to satisfy, the approach performs surprisingly well: It has the capability of learning from only a few training examples and competes with state-of-the-art systems. We also discuss the existence of a universal, redundant dictionary of features that could handle the recognition of most object categories. In addition to its relevance for computer vision, the success of this approach suggests a plausibility proof for a class of feedforward models of object recognition in cortex.
Learning to detect unseen object classes by betweenclass attribute transfer
- In CVPR
, 2009
"... We study the problem of object classification when training and test classes are disjoint, i.e. no training examples of the target classes are available. This setup has hardly been studied in computer vision research, but it is the rule rather than the exception, because the world contains tens of t ..."
Abstract
-
Cited by 363 (5 self)
- Add to MetaCart
(Show Context)
We study the problem of object classification when training and test classes are disjoint, i.e. no training examples of the target classes are available. This setup has hardly been studied in computer vision research, but it is the rule rather than the exception, because the world contains tens of thousands of different object classes and for only a very few of them image, collections have been formed and annotated with suitable class labels. In this paper, we tackle the problem by introducing attribute-based classification. It performs object detection based on a human-specified high-level description of the target objects instead of training images. The description consists of arbitrary semantic attributes, like shape, color or even geographic information. Because such properties transcend the specific learning task at hand, they can be pre-learned, e.g. from image datasets unrelated to the current task. Afterwards, new classes can be detected based on their attribute representation, without the need for a new training phase. In order to evaluate our method and to facilitate research in this area, we have assembled a new largescale dataset, “Animals with Attributes”, of over 30,000 animal images that match the 50 classes in Osherson’s classic table of how strongly humans associate 85 semantic attributes with animal classes. Our experiments show that by using an attribute layer it is indeed possible to build a learning object detection system that does not require any training images of the target classes. 1.
Describing objects by their attributes
- Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
, 2009
"... We propose to shift the goal of recognition from naming to describing. Doing so allows us not only to name familiar objects, but also: to report unusual aspects of a familiar object (“spotty dog”, not just “dog”); to say something about unfamiliar objects (“hairy and four-legged”, not just “unknown” ..."
Abstract
-
Cited by 347 (17 self)
- Add to MetaCart
(Show Context)
We propose to shift the goal of recognition from naming to describing. Doing so allows us not only to name familiar objects, but also: to report unusual aspects of a familiar object (“spotty dog”, not just “dog”); to say something about unfamiliar objects (“hairy and four-legged”, not just “unknown”); and to learn how to recognize new objects with few or no visual examples. Rather than focusing on identity assignment, we make inferring attributes the core problem of recognition. These attributes can be semantic (“spotty”) or discriminative (“dogs have it but sheep do not”). Learning attributes presents a major new challenge: generalization across object categories, not just across instances within a category. In this paper, we also introduce a novel feature selection method for learning attributes that generalize well across categories. We support our claims by thorough evaluation that provides insights into the limitations of the standard recognition paradigm of naming and demonstrates the new abilities provided by our attributebased framework. 1.
Ensemble Tracking
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2007
"... We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained on-line to distinguish between the object and the background. The ensemble of weak classifiers is combined into a strong classifier using AdaBoost. The strong classifier is then used to label pi ..."
Abstract
-
Cited by 328 (2 self)
- Add to MetaCart
(Show Context)
We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained on-line to distinguish between the object and the background. The ensemble of weak classifiers is combined into a strong classifier using AdaBoost. The strong classifier is then used to label pixels in the next frame as either belonging to the object or the background, giving a confidence map. The peak of the map, and hence the new position of the object, is found using mean shift. Temporal coherence is maintained by updating the ensemble with new weak classifiers that are trained on-line during tracking. We show a realization of this method and demonstrate it on several video sequences. 1
Seam carving for content-aware image resizing
- ACM Trans. Graph
, 2007
"... Figure 1: A seam is a connected path of low energy pixels in an image. On the left is the original image with one horizontal and one vertical seam. In the middle the energy function used in this example is shown (the magnitude of the gradient), along with the vertical and horizontal path maps used t ..."
Abstract
-
Cited by 323 (11 self)
- Add to MetaCart
Figure 1: A seam is a connected path of low energy pixels in an image. On the left is the original image with one horizontal and one vertical seam. In the middle the energy function used in this example is shown (the magnitude of the gradient), along with the vertical and horizontal path maps used to calculate the seams. By automatically carving out seams to reduce image size, and inserting seams to extend it, we achieve content-aware resizing. The example on the top right shows our result of extending in one dimension and reducing in the other, compared to standard scaling on the bottom right. Effective resizing of images should not only use geometric constraints, but consider the image content as well. We present a simple image operator called seam carving that supports content-aware image resizing for both reduction and expansion. A seam is an optimal 8-connected path of pixels on a single image from top to bottom, or left to right, where optimality is defined by an image energy function. By repeatedly carving out or inserting seams in one direction we can change the aspect ratio of an image. By applying these operators in both directions we can retarget the image to a new size. The selection and order of seams protect the content of the image, as defined by the energy function. Seam carving can also be used for image content enhancement and object removal. We support various visual saliency measures for defining the energy of an image, and can also include user input to guide the process. By storing the order of seams in an image we create multi-size images, that are able to continuously change in real time to fit a given size.
Putting objects in perspective
- In CVPR
, 2006
"... Image understanding requires not only individually estimating elements of the visual world but also capturing the interplay among them. In this paper, we provide a framework for placing local object detection in the context of the overall 3D scene by modeling the interdependence of objects, surface ..."
Abstract
-
Cited by 307 (14 self)
- Add to MetaCart
(Show Context)
Image understanding requires not only individually estimating elements of the visual world but also capturing the interplay among them. In this paper, we provide a framework for placing local object detection in the context of the overall 3D scene by modeling the interdependence of objects, surface orientations, and camera viewpoint. Most object detection methods consider all scales and locations in the image as equally likely. We show that with probabilistic estimates of 3D geometry, both in terms of surfaces and world coordinates, we can put objects into perspective and model the scale and location variance in the image. Our approach reflects the cyclical nature of the problem by allowing probabilistic object hypotheses to refine geometry and vice-versa. Our framework allows painless substitution of almost any object detector and is easily extended to include other aspects of image understanding. Our results confirm the benefits of our integrated approach. 1.