Results 1 
2 of
2
The Power of Vacillation in Language Learning
, 1992
"... Some extensions are considered of Gold's influential model of language learning by machine from positive data. Studied are criteria of successful learning featuring convergence in the limit to vacillation between several alternative correct grammars. The main theorem of this paper is that there ..."
Abstract

Cited by 45 (13 self)
 Add to MetaCart
(Show Context)
Some extensions are considered of Gold's influential model of language learning by machine from positive data. Studied are criteria of successful learning featuring convergence in the limit to vacillation between several alternative correct grammars. The main theorem of this paper is that there are classes of languages that can be learned if convergence in the limit to up to (n+1) exactly correct grammars is allowed but which cannot be learned if convergence in the limit is to no more than n grammars, where the no more than n grammars can each make finitely many mistakes. This contrasts sharply with results of Barzdin and Podnieks and, later, Case and Smith, for learnability from both positive and negative data. A subset principle from a 1980 paper of Angluin is extended to the vacillatory and other criteria of this paper. This principle, provides a necessary condition for circumventing overgeneralization in learning from positive data. It is applied to prove another theorem to the eff...
Machine induction without revolutionary changes in hypothesis size
 Information and Computation
, 1996
"... This paper provides a beginning study of the effects on inductive inference of paradigm shifts whose absence is approximately modeled by various formal approaches to forbidding large changes in the size of programs conjectured. One approach, called severely parsimonious, requires all the programs co ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
This paper provides a beginning study of the effects on inductive inference of paradigm shifts whose absence is approximately modeled by various formal approaches to forbidding large changes in the size of programs conjectured. One approach, called severely parsimonious, requires all the programs conjectured on the way to success to be nearly (i.e., within a recursive function of) minimal size. It is shown that this very conservative constraint allows learning infinite classes of functions, but not infinite r.e. classes of functions. Another approach, called nonrevolutionary, requires all conjectures to be nearly the same size as one another. This quite conservative constraint is, nonetheless, shown to permit learning some infinite r.e. classes of functions. Allowing up to one extra bounded size mind change towards a final program learned certainly doesnâ€™t appear revolutionary. However, somewhat surprisingly for scientific (inductive) inference, it is shown that there are classes learnable with the nonrevolutionary constraint (respectively, with severe parsimony), up to (i + 1) mind changes, and no anomalies, which classes cannot be learned with no size constraint, an unbounded, finite number of anomalies in the final program, but with no more than i mind changes. Hence, in some cases, the possibility of one extra mind change is considerably more liberating than removal of very conservative size shift constraints. The proofs of these results are also combinatorially interesting. 1