Results 1 - 10
of
257
Robust principal component analysis?
- Journal of the ACM,
, 2011
"... Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the ..."
Abstract
-
Cited by 569 (26 self)
- Add to MetaCart
(Show Context)
Abstract This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the 1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract
-
Cited by 555 (22 self)
- Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Off-the-shelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative and produces a sequence of matrices {X k, Y k} and at each step, mainly performs a soft-thresholding operation on the singular values of the matrix Y k. There are two remarkable features making this attractive for low-rank matrix completion problems. The first is that the soft-thresholding operation is applied to a sparse matrix; the second is that the rank of the iterates {X k} is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On
A simpler approach to matrix completion
- the Journal of Machine Learning Research
"... This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candès and Recht [4], Candès and Tao [7], and Keshavan, Montanari, and Oh [18]. The reconstruction is accomplished by minim ..."
Abstract
-
Cited by 158 (6 self)
- Add to MetaCart
This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct an unknown low rank matrix. These results improve on prior work by Candès and Recht [4], Candès and Tao [7], and Keshavan, Montanari, and Oh [18]. The reconstruction is accomplished by minimizing the nuclear norm, or sum of the singular values, of the hidden matrix subject to agreement with the provided entries. If the underlying matrix satisfies a certain incoherence condition, then the number of entries required is equal to a quadratic logarithmic factor times the number of parameters in the singular value decomposition. The proof of this assertion is short, self contained, and uses very elementary analysis. The novel techniques herein are based on recent work in quantum information theory.
Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
- Advances in Neural Information Processing Systems 22
, 2009
"... The supplementary material to the NIPS version of this paper [4] contains a critical error, which was discovered several days before the conference. Unfortunately, it was too late to withdraw the paper from the proceedings. Fortunately, since that time, a correct analysis of the proposed convex prog ..."
Abstract
-
Cited by 149 (4 self)
- Add to MetaCart
(Show Context)
The supplementary material to the NIPS version of this paper [4] contains a critical error, which was discovered several days before the conference. Unfortunately, it was too late to withdraw the paper from the proceedings. Fortunately, since that time, a correct analysis of the proposed convex programming relaxation has been developed by Emmanuel Candes of Stanford University. That analysis is reported in a joint paper, Robust Principal Component Analysis? by Emmanuel Candes, Xiaodong Li, Yi Ma and John Wright,
Robust Subspace Segmentation by Low-Rank Representation
"... We propose low-rank representation (LRR) to segment data drawn from a union of multiple linear (or affine) subspaces. Given a set of data vectors, LRR seeks the lowestrank representation among all the candidates that represent all vectors as the linear combination of the bases in a dictionary. Unlik ..."
Abstract
-
Cited by 145 (25 self)
- Add to MetaCart
(Show Context)
We propose low-rank representation (LRR) to segment data drawn from a union of multiple linear (or affine) subspaces. Given a set of data vectors, LRR seeks the lowestrank representation among all the candidates that represent all vectors as the linear combination of the bases in a dictionary. Unlike the well-known sparse representation (SR), which computes the sparsest representation of each data vector individually, LRR aims at finding the lowest-rank representation of a collection of vectors jointly. LRR better captures the global structure of data, giving a more effective tool for robust subspace segmentation from corrupted data. Both theoretical and experimental results show that LRR is a promising tool for subspace segmentation. 1.
Robust Recovery of Subspace Structures by Low-Rank Representation
"... In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method ter ..."
Abstract
-
Cited by 128 (24 self)
- Add to MetaCart
(Show Context)
In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed Low-Rank Representation (LRR), which seeks the lowest-rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.
Nuclear norm penalization and optimal rates for noisy low rank matrix completion.
- Annals of Statistics,
, 2011
"... AbstractThis paper deals with the trace regression model where n entries or linear combinations of entries of an unknown m1 × m2 matrix A0 corrupted by noise are observed. We propose a new nuclear norm penalized estimator of A0 and establish a general sharp oracle inequality for this estimator for ..."
Abstract
-
Cited by 107 (7 self)
- Add to MetaCart
(Show Context)
AbstractThis paper deals with the trace regression model where n entries or linear combinations of entries of an unknown m1 × m2 matrix A0 corrupted by noise are observed. We propose a new nuclear norm penalized estimator of A0 and establish a general sharp oracle inequality for this estimator for arbitrary values of n, m1, m2 under the condition of isometry in expectation. Then this method is applied to the matrix completion problem. In this case, the estimator admits a simple explicit form and we prove that it satisfies oracle inequalities with faster rates of convergence than in the previous works. They are valid, in particular, in the high-dimensional setting m1m2 n. We show that the obtained rates are optimal up to logarithmic factors in a minimax sense and also derive, for any fixed matrix A0, a nonminimax lower bound on the rate of convergence of our estimator, which coincides with the upper bound up to a constant factor. Finally, we show that our procedure provides an exact recovery of the rank of A0 with probability close to 1. We also discuss the statistical learning setting where there is no underlying model determined by A0 and the aim is to find the best trace regression model approximating the data.
Structured compressed sensing: From theory to applications
- IEEE TRANS. SIGNAL PROCESS
, 2011
"... Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard ..."
Abstract
-
Cited by 104 (16 self)
- Add to MetaCart
Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.