Results 1 - 10
of
348
Design and Implementation of a High-Fidelity AC Metering Network
- In Proc. Information Processing in Sensor Networks
, 2009
"... We present the architecture, design, and preliminary evaluation of ACme, a wireless sensor and actuator network for monitoring AC energy usage and controlling AC devices in a large and diverse building environment. The ACme system consists of three tiers: the ACme node which provides a metering and ..."
Abstract
-
Cited by 107 (21 self)
- Add to MetaCart
(Show Context)
We present the architecture, design, and preliminary evaluation of ACme, a wireless sensor and actuator network for monitoring AC energy usage and controlling AC devices in a large and diverse building environment. The ACme system consists of three tiers: the ACme node which provides a metering and control interface to a single outlet, a network fabric which allows this interface to be exported to arbitrary IP endpoints, and application software that uses this networked interface to provide various power-centric applications. The ACme node integrates an Epic core module with a dedicated energy metering IC to provide real, reactive, and apparent power measurements, with optional control of an attached load. The network comprises a complete IPv6/6LoWPAN stack on every node and an edge router that connects to other IP networks. The application tier receives and stores readings in a database and uses a web server for visualization. Nodes automatically join the IPv6 subnet after being plugged in, and begin interactions with the application layer. We evaluate our system in a preliminary green building deployment with 49 nodes spread over several floors of a Computer Science Building and present energy consumption data from this preliminary deployment.
RCRT: Rate-Controlled Reliable Transport . . .
"... Emerging high-rate applications (imaging, structural monitoring, acoustic localization) will need to transport large volumes of data concurrently from several sensors. These applications are also loss-intolerant. A key requirement for such applications, then, is a protocol that reliably transport se ..."
Abstract
-
Cited by 87 (6 self)
- Add to MetaCart
Emerging high-rate applications (imaging, structural monitoring, acoustic localization) will need to transport large volumes of data concurrently from several sensors. These applications are also loss-intolerant. A key requirement for such applications, then, is a protocol that reliably transport sensor data from many sources to one or more sinks without incurring congestion collapse. In this paper, we discuss RCRT, a rate-controlled reliable transport protocol suitable for constrained sensor nodes. RCRT uses end-to-end explicit loss recovery, but places all the congestion detection and rate adaptation functionality in the sinks. This has two important advantages: efficiency and flexibility. Because sinks make rate allocation decisions, they are able to achieve greater efficiency since they have a more comprehensive view of network behavior. For the same reason, it is possible to alter the rate allocation decisions (for example, from one that ensures that all nodes get the same rate, to one that ensures that nodes get rates in proportion to their demands), without modifying sensor code at all. We evaluate RCRT extensively on a 40-node wireless sensor network testbed and show that RCRT achieves 1.7 times the rate achieved by IFRC and 1.4 times that of WRCP, two recently proposed interference-aware distributed rate-control protocols. We also present results from a 3-month-long 19-node real world deployment of RCRT in an imaging application and show that RCRT works well in real long-term deployments.
Reliable Clinical Monitoring using Wireless Sensor Networks: Experiences in a Step-down Hospital Unit
"... This paper presents the design, deployment, and empirical study of a wireless clinical monitoring system that collects pulse and oxygen saturation readings from patients. The primary contribution of this paper is an in-depth clinical trial that assesses the feasibility of wireless sensor networks fo ..."
Abstract
-
Cited by 73 (7 self)
- Add to MetaCart
(Show Context)
This paper presents the design, deployment, and empirical study of a wireless clinical monitoring system that collects pulse and oxygen saturation readings from patients. The primary contribution of this paper is an in-depth clinical trial that assesses the feasibility of wireless sensor networks for patient monitoring in general hospital units. We present a detailed analysis of the system reliability from a long term hospital deployment over seven months involving 41 patients in a step-down cardiology unit. The network achieved high reliability (median 99.68%, range 95.21 % – 100%). The overall reliability of the system was dominated by sensing reliability of the pulse oximeters (median 80.85%, range 0.46 % – 97.69%). Sensing failures usually occurred in short bursts, although longer periods were also present due to sensor disconnections. We show that the sensing reliability could be significantly improved through oversampling and by implementing a disconnection alarm system that incurs minimal intervention cost. A retrospective data analysis indicated that the system provided sufficient temporal resolution to support the detection of clinical deterioration in three patients who suffered from significant clinical events including transfer to Intensive Care Units. These results indicate the feasibility and promise of using wireless sensor networks for continuous patient monitoring and clinical deterioration detection in general hospital units.
Design and evaluation of a versatile and efficient receiver-initiated link layer for low-power wireless,” in ACM SenSys,
, 2010
"... Abstract We present A-MAC, a receiver-initiated link layer for low-power wireless networks that supports several services under a unified architecture, and does so more efficiently and scalably than prior approaches. A-MAC's versatility stems from layering unicast, broadcast, wakeup, pollcast, ..."
Abstract
-
Cited by 67 (5 self)
- Add to MetaCart
(Show Context)
Abstract We present A-MAC, a receiver-initiated link layer for low-power wireless networks that supports several services under a unified architecture, and does so more efficiently and scalably than prior approaches. A-MAC's versatility stems from layering unicast, broadcast, wakeup, pollcast, and discovery above a single, flexible synchronization primitive. A-MAC's efficiency stems from optimizing this primitive and with it the most consequential decision that a low-power link makes: whether to stay awake or go to sleep after probing the channel. Today's receiver-initiated protocols require more time and energy to make this decision, and they exhibit worse judgment as well, leading to many false positives and negatives, and lower packet delivery ratios. A-MAC begins to make this decision quickly, and decides more conclusively and correctly in both the negative and affirmative. A-MAC's scalability comes from reserving one channel for the initial handshake and different channels for data transfer. Our results show that: (i) a unified implementation is possible; (ii) A-MAC's idle listening power increases by just 1.12× under interference, compared to 17.3× for LPL and 54.7× for RI-MAC; (iii) A-MAC offers high single-hop delivery ratios, even with multiple contending senders; (iv) network wakeup is faster and far more channel efficient than LPL; and (v) collection routing performance exceeds the state-of-the-art.
Routing Without Routes: The Backpressure Collection Protocol
"... Current data collection protocols for wireless sensor networks are mostly based on quasi-static minimum-cost routing trees. We consider an alternative, highly-agile approach called backpressure routing, in which routing and forwarding decisions are made on a per-packet basis. Although there is a con ..."
Abstract
-
Cited by 58 (6 self)
- Add to MetaCart
(Show Context)
Current data collection protocols for wireless sensor networks are mostly based on quasi-static minimum-cost routing trees. We consider an alternative, highly-agile approach called backpressure routing, in which routing and forwarding decisions are made on a per-packet basis. Although there is a considerable theoretical literature on backpressure routing, it has not been implemented on practical systems to date due to concerns about packet looping, the effect of link losses, large packet delays, and scalability. Addressing these concerns, we present the Backpressure Collection Protocol (BCP) for sensor networks, the first ever implementation of dynamic backpressure routing in wireless networks. In particular, we demonstrate for the first time that replacing the traditional FIFO queue service in backpressure routing with LIFO queues reduces the average end-to-end packet delays for delivered packets drastically (75 % under high load, 98 % under low load). Further, we improve backpressure scalability by introducing a new concept of floating queues into the backpressure framework. Under static network settings, BCP shows a more than 60 % improvement in max-min rate over the state of the art Collection Tree Protocol (CTP). We also empirically demonstrate the superior delivery performance of BCP in highly dynamic network settings, including conditions of extreme external interference and highly mobile sinks. 1.
Surviving Wi-Fi Interference in Low Power ZigBee Networks
"... Frequency overlap across wireless networks with different radio technologies can cause severe interference and reduce communication reliability. The circumstances are particularly unfavorable for ZigBee networks that share the 2.4 GHz ISM band with WiFi senders capable of 10 to 100 times higher tran ..."
Abstract
-
Cited by 52 (1 self)
- Add to MetaCart
(Show Context)
Frequency overlap across wireless networks with different radio technologies can cause severe interference and reduce communication reliability. The circumstances are particularly unfavorable for ZigBee networks that share the 2.4 GHz ISM band with WiFi senders capable of 10 to 100 times higher transmission power. Our work first examines the interference patterns between ZigBee and WiFi networks at the bit-level granularity. Under certain conditions, ZigBee activities can trigger a nearby WiFi transmitter to back off, in which case the header is often the only part of the Zig-Bee packet being corrupted. We call this the symmetric interference regions, in comparison to the asymmetric regions where the ZigBee signal is too weak to be detected by WiFi senders, but WiFi activity can uniformly corrupt any bit in a ZigBee packet. With these observations, we design BuzzBuzz to mitigate WiFi interference through header and payload redundancy. Multi-Headers provides header redundancy giving ZigBee nodes multiple opportunities to detect incoming packets. Then, TinyRS, a full-featured Reed Solomon library for resource-constrained devices, helps decoding polluted packet payload. On a medium-sized testbed, BuzzBuzz improves the ZigBee network delivery rate by 70%. Furthermore, BuzzBuzz reduces ZigBee retransmissions by a factor of three, which increases the WiFi throughput by 10%.
Wireless Sensor Networks for Healthcare
"... Driven by the confluence between the need to collect data about people’s physical, physiological, psychological, cognitive, and behavioral processes in spaces ranging from personal to urban and the recent availability of the technologies that enable this data collection, wireless sensor networks f ..."
Abstract
-
Cited by 51 (1 self)
- Add to MetaCart
Driven by the confluence between the need to collect data about people’s physical, physiological, psychological, cognitive, and behavioral processes in spaces ranging from personal to urban and the recent availability of the technologies that enable this data collection, wireless sensor networks for healthcare have emerged in the recent years. In this review we present some representative applications in the healthcare domain and describe the challenges they introduce to wireless sensor networks due to the required level of trustworthiness and the need to ensure the privacy and security of medical data. These challenges are exacerbated by the resource scarcity that is inherent with wireless sensor network platforms. We outline prototype systems spanning application domains from physiological and activity monitoring to large-scale physiological and behavioral studies and emphasize ongoing research challenges.
Radio link quality estimation in wireless sensor networks: a survey
- ACM Transactions on Sensor Networks (TOSN
"... Radio link quality estimation in Wireless Sensor Networks (WSNs) has a fundamental impact on the network performance and affects as well the design of higher layer protocols. Therefore, since about a decade, it has been attracting a vast array of research works. Reported works on link quality estima ..."
Abstract
-
Cited by 44 (4 self)
- Add to MetaCart
Radio link quality estimation in Wireless Sensor Networks (WSNs) has a fundamental impact on the network performance and affects as well the design of higher layer protocols. Therefore, since about a decade, it has been attracting a vast array of research works. Reported works on link quality estimation are typically based on different assumptions, consider different scenarios, and provide radically different (and sometimes contradictory) results. This paper provides a comprehensive survey on related literature, covering the characteristics of low-power links, the fundamental concepts of link quality estimation in WSNs, a taxonomy of existing link quality estimators, and their performance analysis. To the best of our knowledge, this is the first survey tackling in detail link quality estimation in WSNs. We believe our efforts will serve as a
Bursty traffic over bursty links.
- In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys’09)
, 2009
"... Abstract Accurate estimation of link quality is the key to enable efficient routing in wireless sensor networks. Current link estimators focus mainly on identifying long-term stable links for routing. They leave out a potentially large set of intermediate links offering significant routing progress ..."
Abstract
-
Cited by 33 (5 self)
- Add to MetaCart
(Show Context)
Abstract Accurate estimation of link quality is the key to enable efficient routing in wireless sensor networks. Current link estimators focus mainly on identifying long-term stable links for routing. They leave out a potentially large set of intermediate links offering significant routing progress. Fine-grained analysis of link qualities reveals that such intermediate links are bursty, i.e., stable in the short term. In this paper, we use short-term estimation of wireless links to accurately identify short-term stable periods of transmission on bursty links. Our approach allows a routing protocol to forward packets over bursty links if they offer better routing progress than long-term stable links. We integrate a Short Term Link Estimator and its associated routing strategy with a standard routing protocol for sensor networks. Our evaluation reveals an average of 19% and a maximum of 42% reduction in the overall transmissions when routing over long-range bursty links. Our approach is not tied to any specific routing protocol and integrates seamlessly with existing routing protocols and link estimators.
The ContikiMAC Radio Duty Cycling Protocol
, 2011
"... Low-power wireless devices must keep their radio transceivers off as much as possible to reach a low power consumption, but must wake up often enough to be able to receive communication from their neighbors. This report describes the ContikiMAC radio duty cycling mechanism, the default radio duty cy ..."
Abstract
-
Cited by 32 (1 self)
- Add to MetaCart
(Show Context)
Low-power wireless devices must keep their radio transceivers off as much as possible to reach a low power consumption, but must wake up often enough to be able to receive communication from their neighbors. This report describes the ContikiMAC radio duty cycling mechanism, the default radio duty cycling mechanism in Contiki 2.5, which uses a power efficient wake-up mechanism with a set of timing constraints to allow device to keep their transceivers off. With ContikiMAC, nodes can participate in network communication yet keep their radios turned off for roughly 99 % of the time. This report describes the ContikiMAC mechanism, measures the energy consumption of individual ContikiMAC operations, and evaluates the efficiency of the fast sleep and phase-lock optimizations. 1