Results 1  10
of
91
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 597 (24 self)
 Add to MetaCart
(Show Context)
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse. We discuss
On the Implementation of an InteriorPoint Filter LineSearch Algorithm for LargeScale Nonlinear Programming
, 2004
"... We present a primaldual interiorpoint algorithm with a filter linesearch method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration ph ..."
Abstract

Cited by 294 (6 self)
 Add to MetaCart
(Show Context)
We present a primaldual interiorpoint algorithm with a filter linesearch method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration phase for the filter method, secondorder corrections, and inertia correction of the KKT matrix. Heuristics are also considered that allow faster performance. This method has been implemented in the IPOPT code, which we demonstrate in a detailed numerical study based on 954 problems from the CUTEr test set. An evaluation is made of several linesearch options, and a comparison is provided with two stateoftheart interiorpoint codes for nonlinear programming.
KNITRO: An integrated package for nonlinear optimization
 Large Scale Nonlinear Optimization, 35–59, 2006
, 2006
"... This paper describes Knitro 5.0, a Cpackage for nonlinear optimization that combines complementary approaches to nonlinear optimization to achieve robust performance over a wide range of application requirements. The package is designed for solving largescale, smooth nonlinear programming problems ..."
Abstract

Cited by 111 (3 self)
 Add to MetaCart
(Show Context)
This paper describes Knitro 5.0, a Cpackage for nonlinear optimization that combines complementary approaches to nonlinear optimization to achieve robust performance over a wide range of application requirements. The package is designed for solving largescale, smooth nonlinear programming problems, and it is also effective for the following special cases: unconstrained optimization, nonlinear systems of equations, least squares, and linear and quadratic programming. Various algorithmic options are available, including two interior methods and an activeset method. The package provides crossover techniques between algorithmic options as well as automatic selection of options and settings. 1
An interior point algorithm for largescale nonlinear . . .
, 2002
"... Nonlinear programming (NLP) has become an essential tool in process engineering, leading to prot gains through improved plant designs and better control strategies. The rapid advance in computer technology enables engineers to consider increasingly complex systems, where existing optimization codes ..."
Abstract

Cited by 64 (3 self)
 Add to MetaCart
Nonlinear programming (NLP) has become an essential tool in process engineering, leading to prot gains through improved plant designs and better control strategies. The rapid advance in computer technology enables engineers to consider increasingly complex systems, where existing optimization codes reach their practical limits. The objective of this dissertation is the design, analysis, implementation, and evaluation of a new NLP algorithm that is able to overcome the current bottlenecks, particularly in the area of process engineering. The proposed algorithm follows an interior point approach, thereby avoiding the combinatorial complexity of identifying the active constraints. Emphasis is laid on exibility in the computation of search directions, which allows the tailoring of the method to individual applications and is mandatory for the solution of very large problems. In a fullspace version the method can be used as general purpose NLP solver, for example in modeling environments such as Ampl. The reduced space version, based on coordinate decomposition, makes it possible to tailor linear algebra
An interior algorithm for nonlinear optimization that combines line search and trust region steps
 Mathematical Programming 107
, 2006
"... An interiorpoint method for nonlinear programming is presented. It enjoys the flexibility of switching between a line search method that computes steps by factoring the primaldual equations and a trust region method that uses a conjugate gradient iteration. Steps computed by direct factorization a ..."
Abstract

Cited by 59 (12 self)
 Add to MetaCart
(Show Context)
An interiorpoint method for nonlinear programming is presented. It enjoys the flexibility of switching between a line search method that computes steps by factoring the primaldual equations and a trust region method that uses a conjugate gradient iteration. Steps computed by direct factorization are always tried first, but if they are deemed ineffective, a trust region iteration that guarantees progress toward stationarity is invoked. To demonstrate its effectiveness, the algorithm is implemented in the Knitro [6, 28] software package and is extensively tested on a wide selection of test problems. 1
An Algorithm for Nonlinear Optimization Using Linear Programming and Equality Constrained Subproblems
, 2003
"... This paper describes an activeset algorithm for largescale nonlinear programming based on the successive linear programming method proposed by Fletcher and Sainz de la Maza [10]. The step computation is performed in two stages. In the first stage a linear program is solved to estimate the activ ..."
Abstract

Cited by 49 (13 self)
 Add to MetaCart
(Show Context)
This paper describes an activeset algorithm for largescale nonlinear programming based on the successive linear programming method proposed by Fletcher and Sainz de la Maza [10]. The step computation is performed in two stages. In the first stage a linear program is solved to estimate the active set at the solution. The linear program is obtained by making a linear approximation to the ` 1 penalty function inside a trust region. In the second stage, an equality constrained quadratic program (EQP) is solved involving only those constraints that are active at the solution of the linear program.
Interior methods for mathematical programs with complementarity constraints
 SIAM J. Optim
, 2004
"... This paper studies theoretical and practical properties of interiorpenalty methods for mathematical programs with complementarity constraints. A framework for implementing these methods is presented, and the need for adaptive penalty update strategies is motivated with examples. The algorithm is sh ..."
Abstract

Cited by 37 (10 self)
 Add to MetaCart
(Show Context)
This paper studies theoretical and practical properties of interiorpenalty methods for mathematical programs with complementarity constraints. A framework for implementing these methods is presented, and the need for adaptive penalty update strategies is motivated with examples. The algorithm is shown to be globally convergent to strongly stationary points, under standard assumptions. These results are then extended to an interiorrelaxation approach. Superlinear convergence to strongly stationary points is also established. Two strategies for updating the penalty parameter are proposed, and their efficiency and robustness are studied on an extensive collection of test problems.
A new active set algorithm for box constrained optimization,”
 SIAM Journal on Optimization,
, 2006
"... ..."
(Show Context)
On the Convergence of Successive LinearQuadratic Programming Algorithms
, 2005
"... The global convergence properties of a class of penalty methods for nonlinear programming are analyzed. These methods include successive linear programming approaches, and more specifically, the successive linearquadratic programming approachpresented by Byrd, Gould, Nocedal and Waltz (Math. Prog ..."
Abstract

Cited by 35 (18 self)
 Add to MetaCart
The global convergence properties of a class of penalty methods for nonlinear programming are analyzed. These methods include successive linear programming approaches, and more specifically, the successive linearquadratic programming approachpresented by Byrd, Gould, Nocedal and Waltz (Math. Programming 100(1):2748, 2004). Every iteration requires the solution of two trustregion subproblems involvingpiecewise linear and quadratic models, respectively. It is shown that, for a fixed penalty parameter, the sequence of iterates approaches stationarity of the penalty function. Aprocedure for dynamically adjusting the penalty parameter is described, and global convergence results for it are established.