Results 11  20
of
347
Semidefinite Programming and Combinatorial Optimization
 DOC. MATH. J. DMV
, 1998
"... We describe a few applications of semide nite programming in combinatorial optimization. ..."
Abstract

Cited by 106 (1 self)
 Add to MetaCart
We describe a few applications of semide nite programming in combinatorial optimization.
Optimization of multiclass queueing networks: Polyhedral and nonlinear characterizations of achievable performance
 ANNALS OF APPLIED PROBABILITY
, 1994
"... We consider open and closed multiclass queueing networks with Poisson arrivals (in open networks), exponentially distributed class dependent service times, and with class dependent deterministic or probabilistic routing. For open networks, the performance objective is to minimize, over all sequen ..."
Abstract

Cited by 75 (9 self)
 Add to MetaCart
We consider open and closed multiclass queueing networks with Poisson arrivals (in open networks), exponentially distributed class dependent service times, and with class dependent deterministic or probabilistic routing. For open networks, the performance objective is to minimize, over all sequencing and routing policies, a weighted sum of the expected response times of different classes. Using a powerful technique involving quadratic or higher order potential functions, we propose variants of a method to derive polyhedral and nonlinear spaces which contain the entire set of achievable response times under stable and preemptive scheduling policies. By optimizing over these spaces, we obtain lower bounds on achievable performance. In particular, we obtain a sequence of progressively more complicated nonlinear approximations (relaxations) which are progressively closer to the exact achievable space. In the special case of single station networks (multiclass queues and Klimov's model) and homogenous multiclass networks, our characterization gives exactly the achievable region. Consequently, the proposed method can be viewed as the natural
Strong duality for semidefinite programming
 SIAM J. Optim
, 1997
"... Abstract. It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interiorpoint methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite ..."
Abstract

Cited by 63 (18 self)
 Add to MetaCart
(Show Context)
Abstract. It is well known that the duality theory for linear programming (LP) is powerful and elegant and lies behind algorithms such as simplex and interiorpoint methods. However, the standard Lagrangian for nonlinear programs requires constraint qualifications to avoid duality gaps. Semidefinite linear programming (SDP) is a generalization of LP where the nonnegativity constraints are replaced by a semidefiniteness constraint on the matrix variables. There are many applications, e.g., in systems and control theory and combinatorial optimization. However, the Lagrangian dual for SDP can have a duality gap. We discuss the relationships among various duals and give a unified treatment for strong duality in semidefinite programming. These duals guarantee strong duality, i.e., a zero duality gap and dual attainment. This paper is motivated by the recent paper by Ramana where one of these duals is introduced.
Proving Integrality Gaps Without Knowing the Linear Program
 THEORY OF COMPUTING
, 2002
"... Proving integrality gaps for linear relaxations of NP optimization problems is a difficult task and usually undertaken on a casebycase basis. We initiate a more systematic approach. We prove an integrality gap of 2o(1) for three families of linear relaxations for vertex cover, and our methods see ..."
Abstract

Cited by 61 (2 self)
 Add to MetaCart
Proving integrality gaps for linear relaxations of NP optimization problems is a difficult task and usually undertaken on a casebycase basis. We initiate a more systematic approach. We prove an integrality gap of 2o(1) for three families of linear relaxations for vertex cover, and our methods seem relevant to other problems as well.
A recipe for semidefinite relaxation for 01 quadratic programming
 JOURNAL OF GLOBAL OPTIMIZATION
, 1995
"... We review various relaxations of (0,1)quadratic programming problems. These include semidefinite programs, parametric trust region problems and concave quadratic maximization. All relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper are the followi ..."
Abstract

Cited by 57 (7 self)
 Add to MetaCart
We review various relaxations of (0,1)quadratic programming problems. These include semidefinite programs, parametric trust region problems and concave quadratic maximization. All relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper are the following. Using Lagrangian duality, we prove equivalence of the relaxations in a unified and simple way. Some of these equivalences have been known previously, but our approach leads to short and transparent proofs. Moreover we extend the approach to the case of equality constrained problems by taking the squared linear constraints into the objective function. We show how this technique can be applied to the Quadratic Assignment Problem, the Graph Partition Problem and the MaxClique Problem. Finally we show our relaxation to be best possible among all quadratic majorants with zero trace.
On Lagrangian relaxation of quadratic matrix constraints
 SIAM J. MATRIX ANAL. APPL
, 2000
"... Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent ..."
Abstract

Cited by 53 (18 self)
 Add to MetaCart
(Show Context)
Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent to semidefinite programming relaxations. For several special cases of QQP, e.g., convex programs and trust region subproblems, the Lagrangian relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective. In this paper we consider a certain QQP where the quadratic constraints correspond to the matrix orthogonality condition XXT = I. For this problem we show that the Lagrangian dual based on relaxing the constraints XXT = I and the seemingly redundant constraints XT X = I has a zero duality gap. This result has natural applications to quadratic assignment and graph partitioning problems, as well as the problem of minimizing the weighted sum of the largest eigenvalues of a matrix. We also show that the technique of relaxing quadratic matrix constraints can be used to obtain a strengthened semidefinite relaxation for the maxcut problem.
Semidefinite Representations for Finite Varieties
 MATHEMATICAL PROGRAMMING
, 2002
"... We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming prob ..."
Abstract

Cited by 51 (7 self)
 Add to MetaCart
We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming problem. This semidefinite program involves combinatorial moment matrices, which are matrices indexed by a basis of the quotient vector space R[x 1 , . . . , x n ]/I. Our arguments are elementary and extend known facts for the grid case including 0/1 and polynomial programming. They also relate to known algebraic tools for solving polynomial systems of equations with finitely many complex solutions. Semidefinite approximations can be constructed by considering truncated combinatorial moment matrices; rank conditions are given (in a grid case) that ensure that the approximation solves the original problem at optimality.
Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds
, 2012
"... We solve a 20year old problem posed by Yannakakis and prove that there exists no polynomialsize linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope an ..."
Abstract

Cited by 51 (11 self)
 Add to MetaCart
We solve a 20year old problem posed by Yannakakis and prove that there exists no polynomialsize linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between oneway quantum communication protocols and semidefinite programming reformulations of LPs.