Results 1 - 10
of
245
Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
, 1999
"... In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating high-fidelit ..."
Abstract
-
Cited by 542 (23 self)
- Add to MetaCart
(Show Context)
In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating high-fidelity computer graphics objects using imperfectly-measured data from the real world. Our approach contains three novel features: an implicit integration method to achieve efficiency, stability, and large time-steps; a scale-dependent Laplacian operator to improve the diffusion process; and finally, a robust curvature flow operator that achieves a smoothing of the shape itself, distinct from any parameterization. Additional features of the algorithm include automatic exact volume preservation, and hard and soft constraints on the positions of the points in the mesh. We compare our method to previous operators and related algorithms, and prove that our curvature and Laplacian operators have several mathematically-desirable qualities that improve the appearance of the resulting surface. In consequence, the user can easily select the appropriate operator according to the desired type of fairing. Finally, we provide a series of examples to graphically and numerically demonstrate the quality of our results.
Discrete Differential-Geometry Operators for Triangulated 2-Manifolds
, 2002
"... This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Vorono ..."
Abstract
-
Cited by 449 (14 self)
- Add to MetaCart
This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Voronoi cells and the mixed Finite-Element/FiniteVolume method, and compare them to existing formulations. Building upon previous work in discrete geometry, these new operators are closely related to the continuous case, guaranteeing an appropriate extension from the continuous to the discrete setting: they respect most intrinsic properties of the continuous differential operators.
Progressive Geometry Compression
, 2000
"... We propose a new progressive compression scheme for arbitrary topology, highly detailed and densely sampled meshes arising from geometry scanning. We observe that meshes consist of three distinct components: geometry, parameter, and connectivity information. The latter two do not contribute to the r ..."
Abstract
-
Cited by 239 (13 self)
- Add to MetaCart
We propose a new progressive compression scheme for arbitrary topology, highly detailed and densely sampled meshes arising from geometry scanning. We observe that meshes consist of three distinct components: geometry, parameter, and connectivity information. The latter two do not contribute to the reduction of error in a compression setting. Using semi-regular meshes, parameter and connectivity information can be virtually eliminated. Coupled with semi-regular wavelet transforms, zerotree coding, and subdivision based reconstruction we see improvements in error by a factor four (12dB) compared to other progressive coding schemes. CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling - hierarchy and geometric transformations; G.1.2 [Numerical Analysis]: Approximation - approximation of surfaces and contours, wavelets and fractals; I.4.2 [Image Processing and Computer Vision]: Compression (Coding) - Approximate methods Additional K...
Laplacian Surface Editing
, 2004
"... Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We p ..."
Abstract
-
Cited by 235 (27 self)
- Add to MetaCart
Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We provide such a representation of a surface, based on the Laplacian of the mesh, by encoding each vertex relative to its neighborhood. The Laplacian of the mesh is enhanced to be invariant to locally linearized rigid transformations and scaling. Based on this Laplacian representation, we develop useful editing operations: interactive free-form deformation in a region of interest based on the transformation of a handle, transfer and mixing of geometric details between two surfaces, and transplanting of a partial surface mesh onto another surface. The main computation involved in all operations is the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the effectiveness of our approach in several examples, showing that the editing operations change the shape while respecting the structural geometric detail.
Spectral Compression of Mesh Geometry
, 2000
"... We show how spectral methods may be applied to 3D mesh data to obtain compact representations. This is achieved by projecting the mesh geometry onto an orthonormal basis derived from the mesh topology. To reduce complexity, the mesh is partitioned into a number of balanced submeshes with minimal int ..."
Abstract
-
Cited by 234 (6 self)
- Add to MetaCart
We show how spectral methods may be applied to 3D mesh data to obtain compact representations. This is achieved by projecting the mesh geometry onto an orthonormal basis derived from the mesh topology. To reduce complexity, the mesh is partitioned into a number of balanced submeshes with minimal interaction, each of which are compressed independently. Our methods may be used for compression and progressive transmission of 3D content, and are shown to be vastly superior to existing methods using spatial techniques, if slight loss can be tolerated.
Shape modeling with pointsampled geometry
- ACM Transactions on Graphics
, 2003
"... Figure 1: Objects created with our system. (a) boolean operations with scanned geometry, (b) an Octopus modeled by deforming and extruding a sphere, (c) a design study for a Siggraph coffee mug created by boolean operations, free-form deformation and displacement mapping. We present a versatile and ..."
Abstract
-
Cited by 201 (30 self)
- Add to MetaCart
Figure 1: Objects created with our system. (a) boolean operations with scanned geometry, (b) an Octopus modeled by deforming and extruding a sphere, (c) a design study for a Siggraph coffee mug created by boolean operations, free-form deformation and displacement mapping. We present a versatile and complete free-form shape modeling framework for point-sampled geometry. By combining unstructured point clouds with the implicit surface definition of the moving least squares approximation, we obtain a hybrid geometry representation that allows us to exploit the advantages of implicit and parametric surface models. Based on this representation we introduce a shape modeling system that enables the designer to perform large constrained deformations as well as boolean operations on arbitrarily shaped objects. Due to minimum consistency requirements, point-sampled surfaces can easily be re-structured on the fly to support extreme geometric deformations during interactive editing. In addition, we show that strict topology control is possible and sharp features can be generated and preserved on point-sampled objects. We demonstrate the effectiveness of our system on a large set of input models, including noisy range scans, irregular point clouds, and sparsely as well as densely sampled models.
Mesh Editing with Poisson-Based Gradient Field Manipulation
- ACM TRANS. GRAPH
, 2004
"... In this paper, we introduce a novel approach to mesh editing with the Poisson equation as the theoretical foundation. The most distinctive feature of this approach is that it modifies the original mesh geometry implicitly through gradient field manipulation. Our approach can produce desirable and pl ..."
Abstract
-
Cited by 175 (17 self)
- Add to MetaCart
In this paper, we introduce a novel approach to mesh editing with the Poisson equation as the theoretical foundation. The most distinctive feature of this approach is that it modifies the original mesh geometry implicitly through gradient field manipulation. Our approach can produce desirable and pleasing results for both global and local editing operations, such as deformation, object merging, and smoothing. With the help from a few novel interactive tools, these operations can be performed conveniently with a small amount of user interaction. Our technique has three key components, a basic mesh solver based on the Poisson equation, a gradient field manipulation scheme using local transforms, and a generalized boundary condition representation based on local frames. Experimental results indicate that our framework can outperform previous related mesh editing techniques.
Texture Synthesis over Arbitrary Manifold Surfaces
, 2001
"... Algorithms exist for synthesizing a wide variety of textures over rectangular domains. However, it remains difficult to synthesize general textures over arbitrary manifold surfaces. In this paper, we present a solution to this problem for surfaces defined by dense polygon meshes. Our solution extend ..."
Abstract
-
Cited by 161 (9 self)
- Add to MetaCart
(Show Context)
Algorithms exist for synthesizing a wide variety of textures over rectangular domains. However, it remains difficult to synthesize general textures over arbitrary manifold surfaces. In this paper, we present a solution to this problem for surfaces defined by dense polygon meshes. Our solution extends Wei and Levoy's texture synthesis method [25] by generalizing their definition of search neighborhoods. For each mesh vertex, we establish a local parameterization surrounding the vertex, use this parameterization to create a small rectangular neighborhood with the vertex at its center, and search a sample texture for similar neighborhoods. Our algorithm requires as input only a sample texture and a target model. Notably, it does not require specification of a global tangent vector field; it computes one as it goes - either randomly or via a relaxation process. Despite this, the synthesized texture contains no discontinuities, exhibits low distortion, and is perceived to be similar to the sample texture. We demonstrate that our solution is robust and is applicable to a wide range of textures. Keywords: Texture Synthesis, Texture Mapping, Curves & Surfaces 1
Diffusion Wavelets
, 2004
"... We present a multiresolution construction for efficiently computing, compressing and applying large powers of operators that have high powers with low numerical rank. This allows the fast computation of functions of the operator, notably the associated Green’s function, in compressed form, and their ..."
Abstract
-
Cited by 148 (16 self)
- Add to MetaCart
(Show Context)
We present a multiresolution construction for efficiently computing, compressing and applying large powers of operators that have high powers with low numerical rank. This allows the fast computation of functions of the operator, notably the associated Green’s function, in compressed form, and their fast application. Classes of operators satisfying these conditions include diffusion-like operators, in any dimension, on manifolds, graphs, and in non-homogeneous media. In this case our construction can be viewed as a far-reaching generalization of Fast Multipole Methods, achieved through a different point of view, and of the non-standard wavelet representation of Calderón-Zygmund and pseudodifferential operators, achieved through a different multiresolution analysis adapted to the operator. We show how the dyadic powers of an operator can be used to induce a multiresolution analysis, as in classical Littlewood-Paley and wavelet theory, and we show how to construct, with fast and stable algorithms, scaling function and wavelet bases associated to this multiresolution analysis, and the corresponding downsampling operators, and use them to compress the corresponding powers of the operator. This allows to extend multiscale signal processing to general spaces (such as manifolds and graphs) in a very natural way, with corresponding fast algorithms.
Normal Meshes
, 2000
"... Normal meshes are new fundamental surface descriptions inspired by differential geometry. A normal mesh is a multiresolution mesh where each level can be written as a normal offset from a coarser version. Hence the mesh can be stored with a single float per vertex. We present an algorithm to approxi ..."
Abstract
-
Cited by 144 (8 self)
- Add to MetaCart
Normal meshes are new fundamental surface descriptions inspired by differential geometry. A normal mesh is a multiresolution mesh where each level can be written as a normal offset from a coarser version. Hence the mesh can be stored with a single float per vertex. We present an algorithm to approximate any surface arbitrarily closely with a normal semi-regular mesh. Normal meshes can be useful in numerous applications such as compression, filtering, rendering, texturing, and modeling.