Results 1  10
of
147
Robust Recovery of Signals From a Structured Union of Subspaces
, 2008
"... Traditional sampling theories consider the problem of reconstructing an unknown signal x from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that x lies in a known subspace. Recently, there has been growing interest in nonlinear but structu ..."
Abstract

Cited by 218 (48 self)
 Add to MetaCart
(Show Context)
Traditional sampling theories consider the problem of reconstructing an unknown signal x from a series of samples. A prevalent assumption which often guarantees recovery from the given measurements is that x lies in a known subspace. Recently, there has been growing interest in nonlinear but structured signal models, in which x lies in a union of subspaces. In this paper we develop a general framework for robust and efficient recovery of such signals from a given set of samples. More specifically, we treat the case in which x lies in a sum of k subspaces, chosen from a larger set of m possibilities. The samples are modelled as inner products with an arbitrary set of sampling functions. To derive an efficient and robust recovery algorithm, we show that our problem can be formulated as that of recovering a blocksparse vector whose nonzero elements appear in fixed blocks. We then propose a mixed ℓ2/ℓ1 program for block sparse recovery. Our main result is an equivalence condition under which the proposed convex algorithm is guaranteed to recover the original signal. This result relies on the notion of block restricted isometry property (RIP), which is a generalization of the standard RIP used extensively in the context of compressed sensing. Based on RIP we also prove stability of our approach in the presence of noise and modeling errors. A special case of our framework is that of recovering multiple measurement vectors (MMV) that share a joint sparsity pattern. Adapting our results to this context leads to new MMV recovery methods as well as equivalence conditions under which the entire set can be determined efficiently.
Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals
, 2009
"... Wideband analog signals push contemporary analogtodigital conversion systems to their performance limits. In many applications, however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the bandlimit, alt ..."
Abstract

Cited by 156 (18 self)
 Add to MetaCart
Wideband analog signals push contemporary analogtodigital conversion systems to their performance limits. In many applications, however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the bandlimit, although the locations of the frequencies may not be known a priori. For this type of sparse signal, other sampling strategies are possible. This paper describes a new type of data acquisition system, called a random demodulator, that is constructed from robust, readily available components. Let K denote the total number of frequencies in the signal, and let W denote its bandlimit in Hz. Simulations suggest that the random demodulator requires just O(K log(W/K)) samples per second to stably reconstruct the signal. This sampling rate is exponentially lower than the Nyquist rate of W Hz. In contrast with Nyquist sampling, one must use nonlinear methods, such as convex programming, to recover the signal from the samples taken by the random demodulator. This paper provides a detailed theoretical analysis of the system’s performance that supports the empirical observations.
Blocksparse signals: Uncertainty relations and efficient recovery
 IEEE TRANS. SIGNAL PROCESS
, 2010
"... We consider efficient methods for the recovery of blocksparse signals — i.e., sparse signals that have nonzero entries occurring in clusters—from an underdetermined system of linear equations. An uncertainty relation for blocksparse signals is derived, based on a blockcoherence measure, which we ..."
Abstract

Cited by 156 (18 self)
 Add to MetaCart
We consider efficient methods for the recovery of blocksparse signals — i.e., sparse signals that have nonzero entries occurring in clusters—from an underdetermined system of linear equations. An uncertainty relation for blocksparse signals is derived, based on a blockcoherence measure, which we introduce. We then show that a blockversion of the orthogonal matching pursuit algorithm recovers block ksparse signals in no more than k steps if the blockcoherence is sufficiently small. The same condition on blockcoherence is shown to guarantee successful recovery through a mixed `2=`1optimization approach. This complements previous recovery results for the blocksparse case which relied on small blockrestricted isometry constants. The significance of the results presented in this paper lies in the fact that making explicit use of blocksparsity can provably yield better reconstruction properties than treating the signal as being sparse in the conventional sense, thereby ignoring the additional structure in the problem.
Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation
"... In this paper, we consider recovery of jointly sparse multichannel signals from incomplete measurements. Several approaches have been developed to recover the unknown sparse vectors from the given observations, including thresholding, simultaneous orthogonal matching pursuit (SOMP), and convex relax ..."
Abstract

Cited by 100 (22 self)
 Add to MetaCart
(Show Context)
In this paper, we consider recovery of jointly sparse multichannel signals from incomplete measurements. Several approaches have been developed to recover the unknown sparse vectors from the given observations, including thresholding, simultaneous orthogonal matching pursuit (SOMP), and convex relaxation based on a mixed matrix norm. Typically, worstcase analysis is carried out in order to analyze conditions under which the algorithms are able to recover any jointly sparse set of vectors. However, such an approach is not able to provide insights into why joint sparse recovery is superior to applying standard sparse reconstruction methods to each channel individually. Previous work considered an average case analysis of thresholding and SOMP by imposing a probability model on the measured signals. In this paper, our main focus is on analysis of convex relaxation techniques. In particular, we focus on the mixed ℓ2,1 approach to multichannel recovery. We show that under a very mild condition on the sparsity and on the dictionary characteristics, measured for example by the coherence, the probability of recovery failure decays exponentially in the number of channels. This demonstrates that most of the time, multichannel sparse recovery is indeed superior to single channel methods. Our probability bounds are valid and meaningful even for a small number of signals. Using the tools we develop to analyze the convex relaxation method, we also tighten the previous bounds for thresholding and SOMP.
Structured compressed sensing: From theory to applications
 IEEE TRANS. SIGNAL PROCESS
, 2011
"... Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard ..."
Abstract

Cited by 98 (15 self)
 Add to MetaCart
(Show Context)
Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discretetodiscrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuoustime signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.
Compressed Sensing of Analog Signals in ShiftInvariant Spaces
, 2009
"... A traditional assumption underlying most data converters is that the signal should be sampled at a rate exceeding twice the highest frequency. This statement is based on a worstcase scenario in which the signal occupies the entire available bandwidth. In practice, many signals are sparse so that on ..."
Abstract

Cited by 74 (41 self)
 Add to MetaCart
(Show Context)
A traditional assumption underlying most data converters is that the signal should be sampled at a rate exceeding twice the highest frequency. This statement is based on a worstcase scenario in which the signal occupies the entire available bandwidth. In practice, many signals are sparse so that only part of the bandwidth is used. In this paper, we develop methods for lowrate sampling of continuoustime sparse signals in shiftinvariant (SI) spaces, generated by m kernels with period T. We model sparsity by treating the case in which only k out of the m generators are active, however, we do not know which k are chosen. We show how to sample such signals at a rate much lower than m/T, which is the minimal sampling rate without exploiting sparsity. Our approach combines ideas from analog sampling in a subspace with a recently developed block diagram that converts an infinite set of sparse equations to a finite counterpart. Using these two components we formulate our problem within the framework of finite compressed sensing (CS) and then rely on algorithms developed in that context. The distinguishing feature of our results is that in contrast to standard CS, which treats finitelength vectors, we consider sampling of analog signals for which no underlying finitedimensional model exists. The proposed framework allows to extend much of the recent literature on CS to the analog domain.
Democracy in Action: Quantization, Saturation, and Compressive Sensing
"... Recent theoretical developments in the area of compressive sensing (CS) have the potential to significantly extend the capabilities of digital data acquisition systems such as analogtodigital converters and digital imagers in certain applications. A key hallmark of CS is that it enables subNyquis ..."
Abstract

Cited by 59 (22 self)
 Add to MetaCart
Recent theoretical developments in the area of compressive sensing (CS) have the potential to significantly extend the capabilities of digital data acquisition systems such as analogtodigital converters and digital imagers in certain applications. A key hallmark of CS is that it enables subNyquist sampling for signals, images, and other data. In this paper, we explore and exploit another heretofore relatively unexplored hallmark, the fact that certain CS measurement systems are democractic, which means that each measurement carries roughly the same amount of information about the signal being acquired. Using the democracy property, we rethink how to quantize the compressive measurements in practical CS systems. If we were to apply the conventional wisdom gained from conventional ShannonNyquist uniform sampling, then we would scale down the analog signal amplitude (and therefore increase the quantization error) to avoid the gross saturation errors that occur when the signal amplitude exceeds the quantizer’s dynamic range. In stark contrast, we demonstrate that a CS system achieves the best performance when it operates at a significantly nonzero saturation rate. We develop two methods to recover signals from saturated CS measurements. The first directly exploits the democracy property by simply discarding the saturated measurements. The second integrates saturated measurements as constraints into standard linear programming and greedy recovery techniques. Finally, we develop a simple automatic gain control system that uses the saturation rate to optimize the input gain.
Multichannel sampling of pulse streams at the rate of innovation
 IEEE TRANS. SIGNAL PROCESS
, 2011
"... We consider minimalrate sampling schemes for infinite streams of delayed and weighted versions of a known pulse shape. The minimal sampling rate for these parametric signals is referred to as the rate of innovation and is equal to the number of degrees of freedom per unit time. Although sampling of ..."
Abstract

Cited by 51 (9 self)
 Add to MetaCart
We consider minimalrate sampling schemes for infinite streams of delayed and weighted versions of a known pulse shape. The minimal sampling rate for these parametric signals is referred to as the rate of innovation and is equal to the number of degrees of freedom per unit time. Although sampling of infinite pulse streams was treated in previous works, either the rate of innovation was not achieved, or the pulse shape was limited to Diracs. In this paper we propose a multichannel architecture for sampling pulse streams with arbitrary shape, operating at the rate of innovation. Our approach is based on modulating the input signal with a set of properly chosen waveforms, followed by a bank of integrators. This architecture is motivated by recent work on subNyquist sampling of multiband signals. We show that the pulse stream can be recovered from the proposed minimalrate samples using standard tools taken from spectral estimation in a stable way even at high rates of innovation. In addition, we address practical implementation issues, such as reduction of hardware complexity and immunity to failure in the sampling channels. The resulting scheme is flexible and exhibits better noise robustness than previous approaches.
Xampling: Signal acquisition and processing in union of subspaces
, 2011
"... We introduce Xampling, a unified framework for signal acquisition and processing of signals in a union of subspaces. The main functions of this framework are two: Analog compression that narrows down the input bandwidth prior to sampling with commercial devices followed by a nonlinear algorithm that ..."
Abstract

Cited by 42 (21 self)
 Add to MetaCart
(Show Context)
We introduce Xampling, a unified framework for signal acquisition and processing of signals in a union of subspaces. The main functions of this framework are two: Analog compression that narrows down the input bandwidth prior to sampling with commercial devices followed by a nonlinear algorithm that detects the input subspace prior to conventional signal processing. A representative union model of spectrally sparse signals serves as a testcase to study these Xampling functions. We adopt three metrics for the choice of analog compression: robustness to model mismatch, required hardware accuracy, and software complexities. We conduct a comprehensive comparison between two subNyquist acquisition strategies for spectrally sparse signals, the random demodulator and the modulated wideband converter (MWC), in terms of these metrics and draw operative conclusions regarding the choice of analog compression. We then address low rate signal processing and develop an algorithm for that purpose that enables convenient signal processing at subNyquist rates from samples obtained by the MWC. We conclude by showing that a variety of other sampling approaches for different union classes fit nicely into our framework.
Spectral Compressive Sensing
"... Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals. A great many applications feature smooth or modulated signals that can be modeled as a linear combination of a small number of sinusoids; such signals are sparse in the frequency do ..."
Abstract

Cited by 37 (5 self)
 Add to MetaCart
(Show Context)
Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals. A great many applications feature smooth or modulated signals that can be modeled as a linear combination of a small number of sinusoids; such signals are sparse in the frequency domain. In practical applications, the standard frequency domain signal representation is the discrete Fourier transform (DFT). Unfortunately, the DFT coefficients of a frequencysparse signal are themselves sparse only in the contrived case where the sinusoid frequencies are integer multiples of the DFT’s fundamental frequency. As a result, practical DFTbased CS acquisition and recovery of smooth signals does not perform nearly as well as one might expect. In this paper, we develop a new spectral compressive sensing (SCS) theory for general frequencysparse signals. The key ingredients are an oversampled DFT frame, a signal model that inhibits closely spaced sinusoids, and classical sinusoid parameter estimation algorithms from the field of spectrum estimation. Using peridogram and eigenanalysis based spectrum estimates (e.g., MUSIC), our new SCS algorithms significantly outperform the current stateoftheart CS algorithms while providing provable bounds on the number of measurements required for stable recovery. I.