Results 1 - 10
of
369
Style-Based Inverse Kinematics
, 2004
"... This paper presents an inverse kinematics system based on a learned model of human poses. Given a set of constraints, our system can produce the most likely pose satisfying those constraints, in realtime. Training the model on different input data leads to different styles of IK. The model is repres ..."
Abstract
-
Cited by 211 (8 self)
- Add to MetaCart
This paper presents an inverse kinematics system based on a learned model of human poses. Given a set of constraints, our system can produce the most likely pose satisfying those constraints, in realtime. Training the model on different input data leads to different styles of IK. The model is represented as a probability distribution over the space of all possible poses. This means that our IK system can generate any pose, but prefers poses that are most similar to the space of poses in the training data. We represent the probability with a novel model called a Scaled Gaussian Process Latent Variable Model. The parameters of the model are all learned automatically; no manual tuning is required for the learning component of the system. We additionally describe a novel procedure for interpolating between styles. Our style-based
Spacetime faces: High resolution capture for modeling and animation
- IN ACM TRANSACTIONS ON GRAPHICS (PROC. OF ACM SIGGRAPH)
, 2004
"... We present an end-to-end system that goes from video sequences to high resolution, editable, dynamically controllable face models. The capture system employs synchronized video cameras and structured light projectors to record videos of a moving face from multiple viewpoints. A novel spacetime stere ..."
Abstract
-
Cited by 193 (7 self)
- Add to MetaCart
We present an end-to-end system that goes from video sequences to high resolution, editable, dynamically controllable face models. The capture system employs synchronized video cameras and structured light projectors to record videos of a moving face from multiple viewpoints. A novel spacetime stereo algorithm is introduced to compute depth maps accurately and overcome over-fitting deficiencies in prior work. A new template fitting and tracking procedure fills in missing data and yields point correspondence across the entire sequence without using markers. We demonstrate a datadriven, interactive method for inverse kinematics that draws on the large set of fitted templates and allows for posing new expressions by dragging surface points directly. Finally, we describe new tools that model the dynamics in the input sequence to enable new animations, created via key-framing or texture-synthesis techniques.
Automated Extraction and Parameterization of Motions in Large Data Sets
- ACM Transactions on Graphics
, 2004
"... Large motion data sets often contain many variants of the same kind of motion, but without appropriate tools it is difficult to fully exploit this fact. This paper provides automated methods for identifying logically similar motions in a data set and using them to build a continuous and intuitively ..."
Abstract
-
Cited by 183 (2 self)
- Add to MetaCart
Large motion data sets often contain many variants of the same kind of motion, but without appropriate tools it is difficult to fully exploit this fact. This paper provides automated methods for identifying logically similar motions in a data set and using them to build a continuous and intuitively parameterized space of motions. To find logically similar motions that are numerically dissimilar, our search method employs a novel distance metric to find “close ” motions and then uses them as intermediaries to find more distant motions. Search queries are answered at interactive speeds through a precomputation that compactly represents all possibly similar motion segments. Once a set of related motions has been extracted, we automatically register them and apply blending techniques to create a continuous space of motions. Given a function that defines relevant motion parameters, we present a method for extracting motions from this space that accurately possess new parameters requested by the user. Our algorithm extends previous work by explicitly constraining blend weights to reasonable values and having a run-time cost that is nearly independent of the number of example motions. We present experimental results on a test data set of 37,000 frames, or about ten minutes of motion sampled at 60 Hz.
Gaussian process dynamical models for human motion
- IEEE TRANS. PATTERN ANAL. MACHINE INTELL
, 2008
"... We introduce Gaussian process dynamical models (GPDMs) for nonlinear time series analysis, with applications to learning models of human pose and motion from high-dimensional motion capture data. A GPDM is a latent variable model. It comprises a lowdimensional latent space with associated dynamics, ..."
Abstract
-
Cited by 158 (5 self)
- Add to MetaCart
(Show Context)
We introduce Gaussian process dynamical models (GPDMs) for nonlinear time series analysis, with applications to learning models of human pose and motion from high-dimensional motion capture data. A GPDM is a latent variable model. It comprises a lowdimensional latent space with associated dynamics, as well as a map from the latent space to an observation space. We marginalize out the model parameters in closed form by using Gaussian process priors for both the dynamical and the observation mappings. This results in a nonparametric model for dynamical systems that accounts for uncertainty in the model. We demonstrate the approach and compare four learning algorithms on human motion capture data, in which each pose is 50-dimensional. Despite the use of small data sets, the GPDM learns an effective representation of the nonlinear dynamics in these spaces.
Motion Capture Assisted Animation: Texturing and Synthesis
, 2002
"... We discuss a method for creating animations that allows the animator to sketch an animation by setting a small number of keyframes on a fraction of the possible degrees of freedom. Motion capture data is then used to enhance the animation. Detail is added to degrees of freedom that were keyframed, a ..."
Abstract
-
Cited by 150 (3 self)
- Add to MetaCart
We discuss a method for creating animations that allows the animator to sketch an animation by setting a small number of keyframes on a fraction of the possible degrees of freedom. Motion capture data is then used to enhance the animation. Detail is added to degrees of freedom that were keyframed, a process we call texturing. Degrees of freedom that were not keyframed are synthesized. The method takes advantage of the fact that joint motions of an articulated figure are often correlated, so that given an incomplete data set, the missing degrees of freedom can be predicted from those that are present.
Segmenting Motion Capture Data into Distinct Behaviors
- In Graphics Interface
, 2004
"... Much of the motion capture data used in animations, commercials, and video games is carefully segmented into distinct motions either at the time of capture or by hand after the capture session. As we move toward collecting more and longer motion sequences, however, automatic segmentation techniques ..."
Abstract
-
Cited by 137 (5 self)
- Add to MetaCart
(Show Context)
Much of the motion capture data used in animations, commercials, and video games is carefully segmented into distinct motions either at the time of capture or by hand after the capture session. As we move toward collecting more and longer motion sequences, however, automatic segmentation techniques will become important for processing the results in a reasonable time frame.
Performance Animation from Low-dimensional Control Signals
- ACM Transactions on Graphics
, 2005
"... This paper introduces an approach to performance animation that employs video cameras and a small set of retro-reflective markers to create a low-cost, easy-to-use system that might someday be practical for home use. The low-dimensional control signals from the user's performance are supplement ..."
Abstract
-
Cited by 129 (18 self)
- Add to MetaCart
This paper introduces an approach to performance animation that employs video cameras and a small set of retro-reflective markers to create a low-cost, easy-to-use system that might someday be practical for home use. The low-dimensional control signals from the user's performance are supplemented by a database of pre-recorded human motion. At run time, the system automatically learns a series of local models from a set of motion capture examples that are a close match to the marker locations captured by the cameras. These local models are then used to reconstruct the motion of the user as a full-body animation. We demonstrate the power of this approach with real-time control of six different behaviors using two video cameras and a small set of retro-reflective markers. We compare the resulting animation to animation from commercial motion capture equipment with a full set of markers.
Learning Physics-Based Motion Style with Nonlinear Inverse Optimization
- ACM Trans. Graph
, 2005
"... This paper presents a novel physics-based representation of realistic character motion. The dynamical model incorporates several factors of locomotion derived from the biomechanical literature, including relative preferences for using some muscles more than others, elastic mechanisms at joints due t ..."
Abstract
-
Cited by 127 (14 self)
- Add to MetaCart
This paper presents a novel physics-based representation of realistic character motion. The dynamical model incorporates several factors of locomotion derived from the biomechanical literature, including relative preferences for using some muscles more than others, elastic mechanisms at joints due to the mechanical properties of tendons, ligaments, and muscles, and variable stiffness at joints depending on the task. When used in a spacetime optimization framework, the parameters of this model define a wide range of styles of natural human movement.