Results 1 - 10
of
44
Poisson Surface Reconstruction
, 2006
"... We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function ..."
Abstract
-
Cited by 369 (5 self)
- Add to MetaCart
We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function schemes, our Poisson approach allows a hierarchy of locally supported basis functions, and therefore the solution reduces to a well conditioned sparse linear system. We describe a spatially adaptive multiscale algorithm whose time and space complexities are proportional to the size of the reconstructed model. Experimenting with publicly available scan data, we demonstrate reconstruction of surfaces with greater detail than previously achievable.
Physically Based Deformable Models in Computer Graphics
- EUROGRAPHICS 2005 STAR – STATE OF THE ART REPORT
, 2005
"... Physically based deformable models have been widely embraced by the Computer Graphics community. Many problems outlined in a previous survey by Gibson and Mirtich [GM97] have been addressed, thereby making these models interesting and useful for both offline and real-time applications, such as motio ..."
Abstract
-
Cited by 164 (3 self)
- Add to MetaCart
Physically based deformable models have been widely embraced by the Computer Graphics community. Many problems outlined in a previous survey by Gibson and Mirtich [GM97] have been addressed, thereby making these models interesting and useful for both offline and real-time applications, such as motion pictures and video games. In this paper, we present the most significant contributions of the past decade, which produce such impressive and perceivably realistic animations and simulations: finite element/difference/volume methods, mass-spring systems, meshfree methods, coupled particle systems and reduced deformable models based on modal analysis. For completeness, we also make a connection to the simulation of other continua, such as fluids, gases and melting objects. Since time integration is inherent to all simulated phenomena, the general notion of time discretization is treated separately, while specifics are left to the respective models. Finally, we discuss areas of application, such as elastoplastic deformation and fracture, cloth and hair animation, virtual surgery simulation, interactive entertainment and fluid/smoke animation, and also suggest areas for future research.
Directable Photorealistic Liquids
, 2004
"... We present a method for the directable animation of photorealistic liquids using the particle level set method to obtain smooth, visually pleasing complex liquid surfaces. We also provide for a degree of control common to particle-only based simulation techniques. A variety of directable liquid pr ..."
Abstract
-
Cited by 76 (9 self)
- Add to MetaCart
We present a method for the directable animation of photorealistic liquids using the particle level set method to obtain smooth, visually pleasing complex liquid surfaces. We also provide for a degree of control common to particle-only based simulation techniques. A variety of directable liquid primitive variables, including the isosurface value, velocity, and viscosity, can be set throughout the liquid. Interaction of thin liquid sheets with immersed rigid bodies is improved with newly proposed object-liquid boundary conditions. Efficient calculation of largescale animations is supported via a multiple grid pipelined flow method and a novel moving grid windowing technique. In addition, we propose a few significant algorithmic enhancements to the basic liquid simulation algorithm to provide for the smooth merging of liquid drops, allow for the efficient calculation of high viscosity liquids, and ensure the proper treatment of isolated free liquid pockets surrounded by controlled liquid regions.
A Point-based Method for Animating Incompressible Flow
-
, 2009
"... In this paper, we present a point-based method for animating incompressible flow. The advection term is handled by moving the sample points through the flow in a Lagrangian fashion. However, unlike most previous approaches, the pressure term is handled by performing a projection onto a divergence- ..."
Abstract
-
Cited by 27 (0 self)
- Add to MetaCart
In this paper, we present a point-based method for animating incompressible flow. The advection term is handled by moving the sample points through the flow in a Lagrangian fashion. However, unlike most previous approaches, the pressure term is handled by performing a projection onto a divergence-free field. To perform the pressure projection, we compute a Voronoi diagram with the sample points as input. Borrowing from Finite Volume Methods, we then invoke the divergence theorem and ensure that each Voronoi cell is divergence free. To handle complex boundary conditions, Voronoi cells are clipped against obstacle boundaries and free surfaces. The method is stable, flexible and combines many of the desirable features of point-based and grid-based methods. We demonstrate our approach on several examples of splashing and streaming liquid and swirling smoke.
NEYRET F.: Simulation of Smoke Based on Vortex Filament Primitives
- In SCA’05: Proc. of the Symposium on Computer Animation
"... HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte p ..."
Abstract
-
Cited by 26 (2 self)
- Add to MetaCart
(Show Context)
HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a ̀ la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids
"... When simulating fluids, tetrahedral methods provide flexibility and ease of adaptivity that Cartesian grids find difficult to match. However, this approach has so far been limited by two conflicting requirements. First, accurate simulation requires quality Delaunay meshes and the use of circumcentri ..."
Abstract
-
Cited by 17 (2 self)
- Add to MetaCart
(Show Context)
When simulating fluids, tetrahedral methods provide flexibility and ease of adaptivity that Cartesian grids find difficult to match. However, this approach has so far been limited by two conflicting requirements. First, accurate simulation requires quality Delaunay meshes and the use of circumcentric pressures. Second, meshes must align with potentially complex moving surfaces and boundaries, necessitating continuous remeshing. Unfortunately, sacrificing mesh quality in favour of speed yields inaccurate velocities and simulation artifacts. We describe how to eliminate the boundary-matching constraint by adapting recent embedded boundary techniques to tetrahedra, so that neither air nor solid boundaries need to align with mesh geometry. This enables the use of high quality, arbitrarily graded, non-conforming Delaunay meshes, which are simpler and faster to generate. Temporal coherence can also be exploited by reusing meshes over adjacent timesteps to further reduce meshing costs. Lastly, our free surface boundary condition eliminates the spurious currents that previous methods exhibited for slow or static scenarios. We provide several examples demonstrating that our efficient tetrahedral embedded boundary method can substantially increase the flexibility and accuracy of adaptive Eulerian fluid simulation.
Textured liquids based on the marker level set
- Computer Graphics Forum
, 2007
"... In this work we propose a new Eulerian method for handling the dynamics of a liquid and its surface attributes (for example its color). Our approach is based on a new method for interface advection that we term the Marker Level Set (MLS). The MLS method uses surface markers and a level set for track ..."
Abstract
-
Cited by 13 (3 self)
- Add to MetaCart
(Show Context)
In this work we propose a new Eulerian method for handling the dynamics of a liquid and its surface attributes (for example its color). Our approach is based on a new method for interface advection that we term the Marker Level Set (MLS). The MLS method uses surface markers and a level set for tracking the surface of the liquid, yielding more efficient and accurate results than popular methods like the Particle Level Set method (PLS). Another novelty is that the surface markers allow the MLS to handle non-diffusively surface texture advection, a rare capability in the realm of Eulerian simulation of liquids. We present several simulations of the dynamical evolution of liquids and their surface textures.
Fluid Animation with Explicit Surface Meshes and Boundary-Only Dynamics
, 2006
"... An explicit method for fluid surface tracking is presented. The method repre-sents the surface as a triangulated mesh of points in space, rather than as an implicit surface function. Utilizing well-developed algorithms designed for col-lision detection and resolution in cloth simulation, the system ..."
Abstract
-
Cited by 13 (4 self)
- Add to MetaCart
An explicit method for fluid surface tracking is presented. The method repre-sents the surface as a triangulated mesh of points in space, rather than as an implicit surface function. Utilizing well-developed algorithms designed for col-lision detection and resolution in cloth simulation, the system is able to handle topology changes robustly and efficiently. When fluid surfaces collide, we per-form topology changes only in the most trivial cases — we reject any degenerate cases and use the cloth algorithm to keep the surfaces separated. Taking advantage of the explicit surface representation, we introduce new approaches to simulating surface tension and conserving fluid volume. Finally, we propose a boundary element method for enforcing fluid incompressibility which uses only data points on the fluid surface, rather than a full volumetric discretization of the fluid over a grid. ii
C.: Explicit mesh surfaces for particle based fluids
- Computer Graphics Forum (Proc. Eurographics
, 2012
"... Figure 1: A drop falling into a shallow pool creates a water crown. We introduce the idea of using an explicit triangle mesh to track the air/fluid interface in a smoothed particle hydrodynamics (SPH) simulator. Once an initial surface mesh is created, this mesh is carried forward in time using near ..."
Abstract
-
Cited by 12 (2 self)
- Add to MetaCart
(Show Context)
Figure 1: A drop falling into a shallow pool creates a water crown. We introduce the idea of using an explicit triangle mesh to track the air/fluid interface in a smoothed particle hydrodynamics (SPH) simulator. Once an initial surface mesh is created, this mesh is carried forward in time using nearby particle velocities to advect the mesh vertices. The mesh connectivity remains mostly unchanged across time-steps; it is only modified locally for topology change events or for the improvement of triangle quality. In order to ensure that the surface mesh does not diverge from the underlying particle simulation, we periodically project the mesh surface onto an implicit surface defined by the physics simulation. The mesh surface gives us several advantages over previous SPH surface tracking techniques. We demonstrate a new method for surface tension calculations that clearly outperforms the state of the art in SPH surface tension for computer graphics. We also demonstrate a method for tracking detailed surface information (like colors) that is less susceptible to numerical diffusion than competing techniques. Finally, our temporally-coherent surface mesh allows us to simulate highresolution surface wave dynamics without being limited by the particle resolution of the SPH simulation.
Theory Simul
, 1993
"... Service-oriented simulation framework: An overview and unifying methodology ..."
Abstract
-
Cited by 10 (1 self)
- Add to MetaCart
(Show Context)
Service-oriented simulation framework: An overview and unifying methodology