Results 1 - 10
of
362
A Morphable Model For The Synthesis Of 3D Faces
, 1999
"... In this paper, a new technique for modeling textured 3D faces is introduced. 3D faces can either be generated automatically from one or more photographs, or modeled directly through an intuitive user interface. Users are assisted in two key problems of computer aided face modeling. First, new face i ..."
Abstract
-
Cited by 1088 (55 self)
- Add to MetaCart
In this paper, a new technique for modeling textured 3D faces is introduced. 3D faces can either be generated automatically from one or more photographs, or modeled directly through an intuitive user interface. Users are assisted in two key problems of computer aided face modeling. First, new face images or new 3D face models can be registered automatically by computing dense one-to-one correspondence to an internal face model. Second, the approach regulates the naturalness of modeled faces avoiding faces with an "unlikely" appearance. Starting from
Deformable models in medical image analysis: A survey
- Medical Image Analysis
, 1996
"... This article surveys deformable models, a promising and vigorously researched computer-assisted medical image analysis technique. Among model-based techniques, deformable models offer a unique and powerful approach to image analysis that combines geometry, physics, and approximation theory. They hav ..."
Abstract
-
Cited by 591 (7 self)
- Add to MetaCart
(Show Context)
This article surveys deformable models, a promising and vigorously researched computer-assisted medical image analysis technique. Among model-based techniques, deformable models offer a unique and powerful approach to image analysis that combines geometry, physics, and approximation theory. They have proven to be effective in segmenting, matching, and tracking anatomic structures by exploiting (bottom-up) constraints derived from the image data together with (top-down) a priori knowledge about the location, size, and shape of these structures. Deformable models are capable of accommodating the significant variability of biological structures over time and across different individuals. Furthermore, they support highly intuitive interaction mechanisms that, when necessary, allow medical scientists and practitioners to bring their expertise to bear on the model-based image interpretation task. This article reviews the rapidly expanding body of work on the development and application of deformable models to problems of fundamental importance in medical image analysis, includingsegmentation, shape representation, matching, and motion tracking.
Synthesizing Realistic Facial Expressions from Photographs
"... We present new techniques for creating photorealistic textured 3D facial models from photographs of a human subject, and for creating smooth transitions between different facial expressions by morphing between these different models. Starting from several uncalibrated views of a human subject, we em ..."
Abstract
-
Cited by 291 (11 self)
- Add to MetaCart
(Show Context)
We present new techniques for creating photorealistic textured 3D facial models from photographs of a human subject, and for creating smooth transitions between different facial expressions by morphing between these different models. Starting from several uncalibrated views of a human subject, we employ a user-assisted technique to recover the camera poses corresponding to the views as well as the 3D coordinates of a sparse set of chosen locations on the subject's face. A scattered data interpolation technique is then used to deform a generic face mesh to fit the particular geometry of the subject's face. Having recovered the camera poses and the facial geometry, we extract from the input images one or more texture maps for the model. This process is repeated for several facial expressions of a particular subject. To generate transitions between these facial expressions we use 3D shape morphing between the corresponding face models, while at the same time blending the corresponding tex...
ArtDefo -- Accurate Real Time Deformable Objects
, 1999
"... We present an algorithm for fast, physically accurate simulation of deformable objects suitable for real time animation and virtual environment interaction. We describe the boundary integral equation formulation of static linear elasticity as well as the related Boundary Element Method (BEM) discret ..."
Abstract
-
Cited by 217 (17 self)
- Add to MetaCart
(Show Context)
We present an algorithm for fast, physically accurate simulation of deformable objects suitable for real time animation and virtual environment interaction. We describe the boundary integral equation formulation of static linear elasticity as well as the related Boundary Element Method (BEM) discretization technique. In addition, we show how to exploit the coherence of typical interactions to achieve low latency; the boundary formulation lends itself well to a fast update method when a few boundary conditions change. The algorithms are described in detail with examples from ArtDefo, our implementation.
Trainable Videorealistic Speech Animation
- PROCEEDINGS OF SIGGRAPH 2002, SAN ANTONIO TEXAS
, 2002
"... We describe how to create with machine learning techniques a generative, videorealistic, speech animation module. A human subject is first recorded using a videocamera as he/she utters a predetermined speech corpus. After processing the corpus automatically, a visual speech module is learned from th ..."
Abstract
-
Cited by 206 (5 self)
- Add to MetaCart
We describe how to create with machine learning techniques a generative, videorealistic, speech animation module. A human subject is first recorded using a videocamera as he/she utters a predetermined speech corpus. After processing the corpus automatically, a visual speech module is learned from the data that is capable of synthesizing the human subject's mouth uttering entirely novel utterances that were not recorded in the original video. The synthesized utterance is re-composited onto a background sequence which contains natural head and eye movement. The final output is videorealistic in the sense that it looks like a video camera recording of the subject. At run time, the input to the system can be either real audio sequences or synthetic audio produced by a text-to-speech system, as long as they have been phonetically aligned. The two key
A survey of deformable modeling in computer graphics
, 1997
"... This paper presents a survey of the work done in modeling deformable objects within the computer graphics research community. The research has a long history and a wide variety of approaches have been used. This paper organizes the diversity of research by the technique used rather than by the appli ..."
Abstract
-
Cited by 191 (1 self)
- Add to MetaCart
This paper presents a survey of the work done in modeling deformable objects within the computer graphics research community. The research has a long history and a wide variety of approaches have been used. This paper organizes the diversity of research by the technique used rather than by the application, although applications are discussed throughout. This paper presents some purely geometric approaches for modeling deformable objects, but focuses on physically based approaches. In the latter category are mass-spring models, nite element models, approximate continuum models, and low degree of freedom models. Special emphasis is placed on nite element models, which o er the greatest accuracy, but have seen limited use in computer graphics. The paper also suggests important areas for future research. 1
Making Faces
, 1998
"... We have created a system for capturing both the three-dimensional geometry and color and shading information for human facial expressions. We use this data to reconstruct photorealistic, 3D animations of the captured expressions. The system uses a large set of sampling points on the face to accurate ..."
Abstract
-
Cited by 186 (2 self)
- Add to MetaCart
(Show Context)
We have created a system for capturing both the three-dimensional geometry and color and shading information for human facial expressions. We use this data to reconstruct photorealistic, 3D animations of the captured expressions. The system uses a large set of sampling points on the face to accurately track the three dimensional deformations of the face. Simultaneously with the tracking of the geometric data, we capture multiple high resolution, registered video images of the face. These images are used to create a texture map sequence for a three dimensional polygonal face model which can then be rendered on standard 3D graphics hardware. The resulting facial animation is surprisingly life-like and looks very much like the original live performance. Separating the capture of the geometry from the texture images eliminates much of the variance in the image data due to motion, which increases compression ratios. Although the primary emphasis of our work is not compression we have investigated the use of a novel method to compress the geometric data based on principal components analysis. The texture sequence is compressed using an MPEG4 video codec. Animations reconstructed from 512x512 pixel textures look good at data rates as low as 240 Kbits per second.
Face Transfer with Multilinear Models
- TO APPEAR IN SIGGRAPH 2005
, 2005
"... Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another. It extracts visemes (speech-related mouth articulations), expressions, and three-dimensional (3D) pose from monocular video or film footage. These parameters are then used to generate ..."
Abstract
-
Cited by 145 (3 self)
- Add to MetaCart
Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another. It extracts visemes (speech-related mouth articulations), expressions, and three-dimensional (3D) pose from monocular video or film footage. These parameters are then used to generate and drive a detailed 3D textured face mesh for a target identity, which can be seamlessly rendered back into target footage. The underlying face model automatically adjusts for how the target performs facial expressions and visemes. The performance data can be easily edited to change the visemes, expressions, pose, or even the identity of the target—the attributes are separably controllable. This supports
EigenSkin: Real Time Large Deformation Character Skinning in Hardware
- In ACM SIGGRAPH Symposium on Computer Animation
, 2002
"... We present a technique which allows subtle nonlinear quasi-static deformations of articulated characters to be compactly approximated by data-dependent eigenbases which are optimized for real time rendering on commodity graphics hardware. The method extends the common Skeletal-Subspace Deformation ( ..."
Abstract
-
Cited by 116 (6 self)
- Add to MetaCart
We present a technique which allows subtle nonlinear quasi-static deformations of articulated characters to be compactly approximated by data-dependent eigenbases which are optimized for real time rendering on commodity graphics hardware. The method extends the common Skeletal-Subspace Deformation (SSD) technique to provide efficient approximations of the complex deformation behaviours exhibited in simulated, measured, and artist-drawn characters. Instead of storing displacements for key poses (which may be numerous), we precompute principal components of the deformation influences for individual kinematic joints, and so construct error-optimal eigenbases describing each joint's deformation subspace. Pose-dependent deformations are then expressed in terms of these reduced eigenbases, allowing precomputed coefficients of the eigenbasis to be interpolated at run time. Vertex program hardware can then efficiently render nonlinear skin deformations using a small number of eigendisplacements stored in graphics hardware. We refer to the final resulting character skinning construct as the model's EigenSkin. Animation results are presented for a very large nonlinear finite element model of a human hand rendered in real time at minimal cost to the main CPU.
Anatomically Based Modeling
, 1997
"... We describe an improved, anatomically based approach to modeling and animating animals. Underlying muscles, bones, and generalized tissue are modeled as triangle meshes or ellipsoids. Muscles are deformable discretized cylinders lying between fixed origins and insertions on specific bones. Default r ..."
Abstract
-
Cited by 112 (8 self)
- Add to MetaCart
We describe an improved, anatomically based approach to modeling and animating animals. Underlying muscles, bones, and generalized tissue are modeled as triangle meshes or ellipsoids. Muscles are deformable discretized cylinders lying between fixed origins and insertions on specific bones. Default rest muscle shapes can be used, or the rest muscle shape can be designed by the user with a small set of parameters. Muscles automatically change shape as the joints move. Skin is generated by voxelizing the underlying components, filtering, and extracting a polygonal isosurface. Isosurface skin vertices are associated with underlying components and move with them during joint motion. Skin motion is consistent with an elastic membrane model. All components are parameterized and can be reused on similar bodies with non-uniformly scaled parts. This parameterization allows a non-uniformly sampled skin to be extracted, maintaining more details at the head and extremities. CR Categories and Subje...