Results 1 - 10
of
54
Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations
- IEEE Trans. Pattern Analysis and Machine Intelligence
, 2007
"... Abstract—We address the problem of comparing sets of images for object recognition, where the sets may represent variations in an object’s appearance due to changing camera pose and lighting conditions. Canonical Correlations (also known as principal or canonical angles), which can be thought of as ..."
Abstract
-
Cited by 130 (11 self)
- Add to MetaCart
(Show Context)
Abstract—We address the problem of comparing sets of images for object recognition, where the sets may represent variations in an object’s appearance due to changing camera pose and lighting conditions. Canonical Correlations (also known as principal or canonical angles), which can be thought of as the angles between two d-dimensional subspaces, have recently attracted attention for image set matching. Canonical correlations offer many benefits in accuracy, efficiency, and robustness compared to the two main classical methods: parametric distribution-based and nonparametric sample-based matching of sets. Here, this is first demonstrated experimentally for reasonably sized data sets using existing methods exploiting canonical correlations. Motivated by their proven effectiveness, a novel discriminative learning method over sets is proposed for set classification. Specifically, inspired by classical Linear Discriminant Analysis (LDA), we develop a linear discriminant function that maximizes the canonical correlations of within-class sets and minimizes the canonical correlations of between-class sets. Image sets transformed by the discriminant function are then compared by the canonical correlations. Classical orthogonal subspace method (OSM) is also investigated for the similar purpose and compared with the proposed method. The proposed method is evaluated on various object recognition problems using face image sets with arbitrary motion captured under different illuminations and image sets of 500 general objects taken at different views. The method is also applied to object category recognition using ETH-80 database. The proposed method is shown to outperform the state-of-the-art methods in terms of accuracy and efficiency. Index Terms—Object recognition, face recognition, image sets, canonical correlation, principal angles, canonical correlation analysis, linear discriminant analysis, orthogonal subspace method. Ç 1
Dual-space linear discriminant analysis for face recognition
- Proc. IEEE Conf. Computer Vision and Pattern Recognition
, 2004
"... Linear Discriminant Analysis (LDA) is a popular feature extraction technique for face recognition. However, it often suffers from the small sample size problem when dealing with the high dimensional face data. Some approaches have been proposed to overcome this problem, but they are often unstable a ..."
Abstract
-
Cited by 75 (18 self)
- Add to MetaCart
(Show Context)
Linear Discriminant Analysis (LDA) is a popular feature extraction technique for face recognition. However, it often suffers from the small sample size problem when dealing with the high dimensional face data. Some approaches have been proposed to overcome this problem, but they are often unstable and have to discard some discriminative information. In this paper, a dual-space LDA approach for face recognition is proposed to take full advantage of the discriminative information in the face space. Based on a probabilistic visual model, the eigenvalue spectrum in the null space of within-class scatter matrix is estimated, and discriminant analysis is simultaneously applied in the principal and null subspaces of the within-class scatter matrix. The two sets of discriminative features are then combined for recognition. It outperforms existing LDA approaches. 1.
X.: Face photo-sketch synthesis and recognition
- IEEE Trans. Pattern Anal. Mach. Intell
, 2009
"... Abstract—In this paper, we propose a novel face photo-sketch synthesis and recognition method using a multiscale Markov Random Fields (MRF) model. Our system has three components: 1) given a face photo, synthesizing a sketch drawing; 2) given a face sketch drawing, synthesizing a photo; and 3) searc ..."
Abstract
-
Cited by 68 (7 self)
- Add to MetaCart
(Show Context)
Abstract—In this paper, we propose a novel face photo-sketch synthesis and recognition method using a multiscale Markov Random Fields (MRF) model. Our system has three components: 1) given a face photo, synthesizing a sketch drawing; 2) given a face sketch drawing, synthesizing a photo; and 3) searching for face photos in the database based on a query sketch drawn by an artist. It has useful applications for both digital entertainment and law enforcement. We assume that faces to be studied are in a frontal pose, with normal lighting and neutral expression, and have no occlusions. To synthesize sketch/photo images, the face region is divided into overlapping patches for learning. The size of the patches decides the scale of local face structures to be learned. From a training set which contains photo-sketch pairs, the joint photo-sketch model is learned at multiple scales using a multiscale MRF model. By transforming a face photo to a sketch (or transforming a sketch to a photo), the difference between photos and sketches is significantly reduced, thus allowing effective matching between the two in face sketch recognition. After the photo-sketch transformation, in principle, most of the proposed face photo recognition approaches can be applied to face sketch recognition in a straightforward way. Extensive experiments are conducted on a face sketch database including 606 faces, which can be downloaded from our Web site
Discriminant analysis with tensor representation
- in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2005
, 2005
"... In this paper, we present a novel approach to solving the supervised dimensionality reduction problem by encoding an image object as a general tensor of 2nd or higher order. First, we propose a Discriminant Tensor Criterion (DTC), whereby multiple interrelated lower-dimensional discriminative subspa ..."
Abstract
-
Cited by 53 (13 self)
- Add to MetaCart
(Show Context)
In this paper, we present a novel approach to solving the supervised dimensionality reduction problem by encoding an image object as a general tensor of 2nd or higher order. First, we propose a Discriminant Tensor Criterion (DTC), whereby multiple interrelated lower-dimensional discriminative subspaces are derived for feature selection. Then, a novel approach called k-mode Cluster-based Discriminant Analysis is presented to iteratively learn these subspaces by unfolding the tensor along different tensor dimensions. We call this algorithm Discriminant Analysis with Tensor Representation (DATER), which has the following characteristics: 1) multiple interrelated subspaces can collaborate to discriminate different classes; 2) for classification problems involving higher-order tensors, the DATER algorithm can avoid the curse of dimensionality dilemma and overcome the small sample size problem; and 3) the computational cost in the learning stage is reduced to a large extent owing to the reduced data dimensions in generalized eigenvalue decomposition. We provide extensive experiments by encoding face images as 2nd or 3rd order tensors to demonstrate that the proposed DATER algorithm based on higher order tensors has the potential to outperform the traditional subspace learning algorithms, especially in the small sample size cases. 1.
Random sampling for subspace face recognition
- International Journal of Computer Vision
, 2006
"... Abstract. Subspace face recognition often suffers from two problems: (1) the training sample set is small compared with the high dimensional feature vector; (2) the performance is sensitive to the subspace dimension. Instead of pursuing a single optimal subspace, we develop an ensemble learning fram ..."
Abstract
-
Cited by 52 (18 self)
- Add to MetaCart
Abstract. Subspace face recognition often suffers from two problems: (1) the training sample set is small compared with the high dimensional feature vector; (2) the performance is sensitive to the subspace dimension. Instead of pursuing a single optimal subspace, we develop an ensemble learning framework based on random sampling on all three key components of a classification system: the feature space, training samples, and subspace parameters. Fisherface and Null Space LDA (N-LDA) are two conventional approaches to address the small sample size problem. But in many cases, these LDA classifiers are overfitted to the training set and discard some useful discriminative information. By analyzing different overfitting problems for the two kinds of LDA classifiers, we use random subspace and bagging to improve them respectively. By random sampling on feature vectors and training samples, multiple stabilized Fisherface and N-LDA classifiers are constructed and the two groups of complementary classifiers are integrated using a fusion rule, so nearly all the discriminative information is preserved. In addition, we further apply random sampling on parameter selection in order to overcome the difficulty of selecting optimal parameters in our algorithms. Then, we use the developed random sampling framework for the integration of multiple features. A robust random sampling face recognition system integrating shape, texture, and Gabor responses is finally constructed.
A face annotation framework with partial clustering and interactive labeling
- In International Conf. on Computer Vision and Pattern Recognition
, 2007
"... Face annotation technology is important for a photo management system. In this paper, we propose a novel interactive face annotation framework combining unsupervised and interactive learning. There are two main contributions in our framework. In the unsupervised stage, a partial clustering algorithm ..."
Abstract
-
Cited by 29 (3 self)
- Add to MetaCart
(Show Context)
Face annotation technology is important for a photo management system. In this paper, we propose a novel interactive face annotation framework combining unsupervised and interactive learning. There are two main contributions in our framework. In the unsupervised stage, a partial clustering algorithm is proposed to find the most evident clusters instead of grouping all instances into clusters, which leads to a good initial labeling for later user interaction. In the interactive stage, an efficient labeling procedure based on minimization of both global system uncertainty and estimated number of user operations is proposed to reduce user interaction as much as possible. Experimental results show that the proposed annotation framework can significantly reduce the face annotation workload and is superior to existing solutions in the literature. 1.
S.: Local distance functions: A taxonomy, new algorithms, and an evaluation
- In: Proc. ICCV (2009
"... We present a taxonomy for local distance functions where most existing algorithms can be regarded as approximations of the geodesic distance defined by a metric tensor. We categorize existing algorithms by how, where and when they estimate the metric tensor. We also extend the taxonomy along each ax ..."
Abstract
-
Cited by 24 (0 self)
- Add to MetaCart
(Show Context)
We present a taxonomy for local distance functions where most existing algorithms can be regarded as approximations of the geodesic distance defined by a metric tensor. We categorize existing algorithms by how, where and when they estimate the metric tensor. We also extend the taxonomy along each axis. How: We introduce hybrid algorithms that use a combination of dimensionality reduction and metric learning to ameliorate over-fitting. Where: We present an exact polynomial time algorithm to integrate the metric tensor along the lines between the test and training points under the assumption that the metric tensor is piecewise constant. When: We propose an interpolation algorithm where the metric tensor is sampled at a number of references points during the offline phase, which are then interpolated during online classification. We also present a comprehensive evaluation of all the algorithms on tasks in face recognition, object recognition, and digit recognition. 1.
Boosted manifold principal angles for image set-based recognition, Pattern Recognition 40
, 2007
"... www.elsevier.com/locate/pr ..."
Nonparametric Subspace Analysis for Face Recognition
- In CVPR
, 2005
"... Linear discriminant analysis (LDA) is a popular face recognition technique. However, an inherent problem with this technique stems from the parametric nature of the scatter matrix, in which the sample distribution in each class is assumed to be normal distribution. So it tends to suffer in the case ..."
Abstract
-
Cited by 22 (8 self)
- Add to MetaCart
(Show Context)
Linear discriminant analysis (LDA) is a popular face recognition technique. However, an inherent problem with this technique stems from the parametric nature of the scatter matrix, in which the sample distribution in each class is assumed to be normal distribution. So it tends to suffer in the case of non-normal distribution. In this paper a nonparametric scatter matrix is defined to replace the traditional parametric scatter matrix in order to overcome this problem. Two kinds of nonparametric subspace analysis (NSA): PNSA and NNSA are proposed for face recognition. The former is based on the principal space of intra-personal scatter matrix, while the latter is based on the null space. In addition, based on the complementary nature of PNSA and NNSA, we further develop a dual NSA-based classifier framework using Gabor images to further improve the recognition performance. Experiments achieve near perfect recognition accuracy (99.7%)ontheXM2VTS database. 1.
Heterogeneous Face Recognition: Matching NIR to Visible Light Images
- Proc. ICPR
, 2010
"... Abstract—Matching near-infrared (NIR) face images to visible light (VIS) face images offers a robust approach to face recognition with unconstrained illumination. In this paper we propose a novel method of heterogeneous face recognition that uses a common feature-based representation for both NIR im ..."
Abstract
-
Cited by 21 (7 self)
- Add to MetaCart
(Show Context)
Abstract—Matching near-infrared (NIR) face images to visible light (VIS) face images offers a robust approach to face recognition with unconstrained illumination. In this paper we propose a novel method of heterogeneous face recognition that uses a common feature-based representation for both NIR images as well as VIS images. Linear discriminant analysis is performed on a collection of random subspaces to learn discriminative projections. NIR and VIS images are matched (i) directly using the random subspace projections, and (ii) using sparse representation classification. Experimental results demonstrate the effectiveness of the proposed approach for matching NIR and VIS face images. Index Terms—Face recognition; near infrared; feature-based; random subspaces; spare representation; I.