Results 1 - 10
of
495
Ensemble forecasting at NCEP and the breeding method
- Mon. Wea. Rev
, 1997
"... The breeding method has been used to generate perturbations for ensemble forecasting at the National Centers for Environmental Prediction (formerly known as the National Meteorological Center) since December 1992. At that time a single breeding cycle with a pair of bred forecasts was implemented. In ..."
Abstract
-
Cited by 196 (15 self)
- Add to MetaCart
(Show Context)
The breeding method has been used to generate perturbations for ensemble forecasting at the National Centers for Environmental Prediction (formerly known as the National Meteorological Center) since December 1992. At that time a single breeding cycle with a pair of bred forecasts was implemented. In March 1994, the ensemble was expanded to seven independent breeding cycles on the Cray C90 supercomputer, and the forecasts were extended to 16 days. This provides 17 independent global forecasts valid for two weeks every day. For efficient ensemble forecasting, the initial perturbations to the control analysis should adequately sample the space of possible analysis errors. It is shown that the analysis cycle is like a breeding cycle: it acts as a nonlinear perturbation model upon the evolution of the real atmosphere. The perturbation (i.e., the analysis error), carried forward in the first-guess forecasts, is ‘‘scaled down’ ’ at regular intervals by the use of observations. Because of this, growing errors associated with the evolving state of the atmosphere develop within the analysis cycle and dominate subsequent forecast error growth. The breeding method simulates the development of growing errors in the analysis cycle. A difference field between two nonlinear forecasts is carried forward (and scaled down at regular intervals) upon the evolving atmospheric analysis fields. By construction, the bred vectors are superpositions of the leading local (timedependent)
A practical method for calculating largest Lyapunov exponents from small data sets
- PHYSICA D
, 1993
"... Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. We present a new m ..."
Abstract
-
Cited by 181 (0 self)
- Add to MetaCart
Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the largest Lyapunov exponent. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. We present a new method for calculating the largest Lyapunov exponent from an experimental time series. The method follows directly from the definition of the largest Lyapunov exponent and is accurate because it takes advantage of all the available data. We show that the algorithm is fast, easy to implement, and robust to changes in the following quantities: embedding dimension, size of data set, reconstruction delay, and noise level. Furthermore, one may use the algorithm to calculate simultaneously the correlation dimension. Thus, one sequence of computations will yield an estimate of both the level of chaos and the system complexity.
Estimating fractal dimension
- Journal of the Optical Society of America A
, 1990
"... Fractals arise from a variety of sources and have been observed in nature and on computer screens. One of the exceptional characteristics of fractals is that they can be described by a noninteger dimension. The geometry of fractals and the mathematics of fractal dimension have provided useful tools ..."
Abstract
-
Cited by 123 (4 self)
- Add to MetaCart
(Show Context)
Fractals arise from a variety of sources and have been observed in nature and on computer screens. One of the exceptional characteristics of fractals is that they can be described by a noninteger dimension. The geometry of fractals and the mathematics of fractal dimension have provided useful tools for a variety of scientific disciplines, among which is chaos. Chaotic dynamical systems exhibit trajectories in their phase space that converge to a strange attractor. The fractal dimension of this attractor counts the effective number of degrees of freedom in the dynamical system and thus quantifies its complexity. In recent years, numerical methods have been developed for estimating the dimension directly from the observed behavior of the physical system. The purpose of this paper is to survey briefly the kinds of fractals that appear in scientific research, to discuss the application of fractals to nonlinear dynamical systems, and finally to review more comprehensively the state of the art in numerical methods for estimating the fractal dimension of a strange attractor. Confusion is a word we have invented for an order which is not understood.-Henry Miller, "Interlude," Tropic of Capricorn Numerical coincidence is a common path to intellectu-al perdition in our quest for meaning. We delight in catalogs of disparate items united by the same number, and often feel in our gut that some unity must underlie it all.
Interdisciplinary application of nonlinear time series methods
- Phys. Reports
, 1998
"... This paper reports on the application to field measurements of time series methods developed on the basis of the theory of deterministic chaos. The major difficulties are pointed out that arise when the data cannot be assumed to be purely deterministic and the potential that remains in this situatio ..."
Abstract
-
Cited by 88 (4 self)
- Add to MetaCart
(Show Context)
This paper reports on the application to field measurements of time series methods developed on the basis of the theory of deterministic chaos. The major difficulties are pointed out that arise when the data cannot be assumed to be purely deterministic and the potential that remains in this situation is discussed. For signals with weakly nonlinear structure, the presence of nonlinearity in a general sense has to be inferred statistically. The paper reviews the relevant methods and discusses the implications for deterministic modeling. Most field measurements yield nonstationary time series, which poses a severe problem for their analysis. Recent progress in the detection and understanding of nonstationarity is reported. If a clear signature of approximate determinism is found, the notions of phase space, attractors, invariant manifolds etc. provide a convenient framework for time series analysis. Although the results have to be interpreted with great care, superior performance can be achieved for typical signal processing tasks. In particular, prediction and filtering of signals are discussed, as well as the classification of system states by means of time series recordings.
Equations of motion from a data series
- Complex Systems
, 1987
"... Abstract. Temporal pattern learning, control and prediction, and chaotic data analysis share a common problem: deducing optimal equations of motion from observations of time-dependent behavior. Each desires to obtain models of the physical world from limited information. We describe a method to reco ..."
Abstract
-
Cited by 58 (15 self)
- Add to MetaCart
(Show Context)
Abstract. Temporal pattern learning, control and prediction, and chaotic data analysis share a common problem: deducing optimal equations of motion from observations of time-dependent behavior. Each desires to obtain models of the physical world from limited information. We describe a method to reconstruct the deterministic portion of the equations of motion directly from a data series. These equations of motion represent a vast reduction of a chaotic data set’s observed complexity to a compact, algorithmic specification. This approach employs an informational measure of model optimality to guide searching through the space of dynamical systems. As corollary results, we indicate how to estimate the minimum embedding dimension, extrinsic noise level, metric entropy, and Lyapunov spectrum. Numerical and experimental applications demonstrate the method’s feasibility and limitations. Extensions to estimating parametrized families of dynamical systems from bifurcation data and to spatial pattern evolution are presented. Applications to predicting chaotic data and the design of forecasting, learning, and control systems, are discussed. 1.
On the computation of Lyapunov exponents for continuous dynamical systems
- SIAM J. Numer. Anal
, 1997
"... ..."
Is there chaos in the brain? II. Experimental evidence and related models
- C. R. Biol
, 2003
"... The search for chaotic patterns has occupied numerous investigators in neuroscience, as in many other fields of science. Their results and main conclusions are reviewed in the light of the most recent criteria that need to be satisfied since the first descriptions of the surrogate strategy. The meth ..."
Abstract
-
Cited by 53 (0 self)
- Add to MetaCart
(Show Context)
The search for chaotic patterns has occupied numerous investigators in neuroscience, as in many other fields of science. Their results and main conclusions are reviewed in the light of the most recent criteria that need to be satisfied since the first descriptions of the surrogate strategy. The methods used in each of these studies have almost invariably combined the analysis of experimental data with simulations using formal models, often based on modified Huxley and Hodgkin equations and/or of the Hindmarsh and Rose models of bursting neurons. Due to technical limitations, the results of these simulations have prevailed over experimental ones in studies on the nonlinear properties of large cortical networks and higher brain functions. Yet, and although a convincing proof of chaos (as defined mathematically) has only been obtained at the level of axons, of single and coupled cells, convergent results can be interpreted as compatible with the notion that signals in the brain are distributed according to chaotic patterns at all levels of its various forms of hierarchy. This chronological account of the main landmarks of nonlinear neurosciences follows an earlier publication [Faure, Korn, C. R. Acad. Sci. Paris, Ser. III 324 (2001) 773–793] that was focused on the basic concepts of nonlinear dynamics and methods of investigations which allow chaotic processes to be distinguished from stochastic ones and on the rationale for envisioning their control using external perturbations. Here we present the data and main arguments that support the existence of chaos at all levels from the simplest to the most complex forms of organization of the nervous system.
Constrained-Realization Monte-Carlo method for Hypothesis Testing
- Physica D
"... : We compare two theoretically distinct approaches to generating artificial (or "surrogate") data for testing hypotheses about a given data set. The first and more straightforward approach is to fit a single "best" model to the original data, and then to generate surrogate data s ..."
Abstract
-
Cited by 53 (1 self)
- Add to MetaCart
: We compare two theoretically distinct approaches to generating artificial (or "surrogate") data for testing hypotheses about a given data set. The first and more straightforward approach is to fit a single "best" model to the original data, and then to generate surrogate data sets that are "typical realizations" of that model. The second approach concentrates not on the model but directly on the original data; it attempts to constrain the surrogate data sets so that they exactly agree with the original data for a specified set of sample statistics. Examples of these two approaches are provided for two simple cases: a test for deviations from a gaussian distribution, and a test for serial dependence in a time series. Additionally, we consider tests for nonlinearity in time series based on a Fourier transform (FT) method and on more conventional autoregressive moving-average (ARMA) fits to the data. The comparative performance of hypothesis testing schemes based on these two approaches...