Results 1 - 10
of
538
The Cricket Location-Support System
, 2000
"... This paper presents the design, implementation, and evaluation of Cricket, a location-support system for in-building, mobile, locationdependent applications. It allows applications running on mobile and static nodes to learn their physical location by using listeners that hear and analyze informatio ..."
Abstract
-
Cited by 1058 (11 self)
- Add to MetaCart
(Show Context)
This paper presents the design, implementation, and evaluation of Cricket, a location-support system for in-building, mobile, locationdependent applications. It allows applications running on mobile and static nodes to learn their physical location by using listeners that hear and analyze information from beacons spread throughout the building. Cricket is the result of several design goals, including user privacy, decentralized administration, network heterogeneity, and low cost. Rather than explicitly tracking user location, Cricket helps devices learn where they are and lets them decide whom to advertise this information to; it does not rely on any centralized management or control and there is no explicit coordination between beacons; it provides information to devices regardless of their type of network connectivity; and each Cricket device is made from off-the-shelf components and costs less than U.S. $10. We describe the randomized algorithm used by beacons to transmit information, the use of concurrent radio and ultrasonic signals to infer distance, the listener inference algorithms to overcome multipath and interference, and practical beacon configuration and positioning techniques that improve accuracy. Our experience with Cricket shows that several location-dependent applications such as in-building active maps and device control can be developed with little effort or manual configuration. 1
Location Systems for Ubiquitous Computing
, 2001
"... This survey and taxonomy of location systems for mobile-computing applications describes... ..."
Abstract
-
Cited by 954 (19 self)
- Add to MetaCart
(Show Context)
This survey and taxonomy of location systems for mobile-computing applications describes...
A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications
, 2001
"... Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is accelerating. One challenge that remains in this emerging research field is the ability to enhance the behavior of any application by informing it of the context ..."
Abstract
-
Cited by 906 (28 self)
- Add to MetaCart
Computing devices and applications are now used beyond the desktop, in diverse environments, and this trend toward ubiquitous computing is accelerating. One challenge that remains in this emerging research field is the ability to enhance the behavior of any application by informing it of the context of its use. By context, we refer to any information that characterizes a situation related to the interaction between humans, applications and the surrounding environment. Context-aware applications promise richer and easier interaction, but the current state of research in this field is still far removed from that vision. This is due to three main problems: (1) the notion of context is still ill defined; (2) there is a lack of conceptual models and methods to help drive the design of context-aware applications; and (3) no tools are available to jump-start the development of context-aware applications. In this paper, we address these three problems in turn. We first define context, identify categories of contextual information, and characterize context-aware application behavior. Though the full impact of context-aware computing requires understanding very subtle and high-level notions of context, we are focusing our efforts on the pieces of context that can be inferred automatically from sensors in a physical environment. We then present a conceptual framework that separates the acquisition and representation of context from the delivery and reaction to context by a contextaware application. We have built a toolkit, the Context Toolkit, that instantiates this conceptual framework and supports the rapid development of a rich space of context-aware applications. We illustrate the usefulness of the conceptual framework by describing a number of contextaware applications that h...
A survey of context-aware mobile computing research
, 2000
"... Context-aware computing is a mobile computing paradigm in which applications can discover and take advantage of contextual information (such as user location, time of day, nearby people and devices, and user activity). Since it was proposed about a decade ago, many researchers have studied this topi ..."
Abstract
-
Cited by 692 (2 self)
- Add to MetaCart
Context-aware computing is a mobile computing paradigm in which applications can discover and take advantage of contextual information (such as user location, time of day, nearby people and devices, and user activity). Since it was proposed about a decade ago, many researchers have studied this topic and built several context-aware applications to demonstrate the usefulness of this new technology. Context-aware applications (or the system infrastructure to support them), however, have never been widely available to everyday users. In this survey of research on context-aware systems and applications, we looked in depth at the types of context used and models of context information, at systems that support collecting and disseminating context, and at applications that adapt to the changing context. Through this survey, it is clear that context-aware research is an old but rich area for research. The difficulties and possible solutions we outline serve as guidance for researchers hoping to make context-aware computing a reality.
Range-Free Localization Schemes for Large Scale Sensor Networks
, 2003
"... Wireless Sensor Networks have been proposed for a multitude of location-dependent applications. For such systems, the cost and limitations of hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point-to-point distance estimates. Because coarse accura ..."
Abstract
-
Cited by 525 (8 self)
- Add to MetaCart
Wireless Sensor Networks have been proposed for a multitude of location-dependent applications. For such systems, the cost and limitations of hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point-to-point distance estimates. Because coarse accuracy is sufficient for most sensor network applications, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. In this paper, we present APIT, a novel localization algorithm that is range-free. We show that our APIT scheme performs best when an irregular radio pattern and random node placement are considered, and low communication overhead is desired. We compare our work via extensive simulation, with three state-of-the-art range-free localization schemes to identify the preferable system configurations of each. In addition, we study the effect of location error on routing and tracking performance. We show that routing performance and tracking accuracy are not significantly affected by localization error when the error is less than 0.4 times the communication radio radius.
Aura: an architectural framework for user mobility in ubiquitous computing environments
- In Proceedings of the 3rd Working IEEE/IFIP Conference on Software Architecture
, 2002
"... Ubiquitous computing poses a number of challenges for software architecture. One of the most important is the ability to design software systems that accommodate dynamically-changing resources. Resource variability arises naturally in a ubiquitous computing setting through user mobility (a user move ..."
Abstract
-
Cited by 248 (3 self)
- Add to MetaCart
(Show Context)
Ubiquitous computing poses a number of challenges for software architecture. One of the most important is the ability to design software systems that accommodate dynamically-changing resources. Resource variability arises naturally in a ubiquitous computing setting through user mobility (a user moves from one computing environment to another), and through the need to exploit time-varying resources in a given environment (such as wireless bandwidth). Traditional approaches to handling resource variability in applications attempt to address the problem by imposing uniformity on the environment. We argue that those approaches are inadequate, and describe an alternative architectural framework that is better matched to the needs of ubiquitous computing. A key feature of the architecture is that user tasks become first class entities. User proxies, or Auras, use models of user tasks to set up, monitor and adapt computing environments proactively. The architectural framework has been implemented and is currently being used as a central component of Project Aura, a campus-wide ubiquitous computing effort. Ubiquitous computing, mobility, architectural framework, architectural style. 1.
The Cricket Compass for Context-Aware Mobile Applications
, 2000
"... The abilit y to determine the orien tation of a device is of fundamental importancein con text-a w areand locationdependent mobile computing. By analogy to a traditional compass, knowledge of orientation through the ####### # ### #### attached to a mobile device enhances various applications, inclu ..."
Abstract
-
Cited by 247 (5 self)
- Add to MetaCart
(Show Context)
The abilit y to determine the orien tation of a device is of fundamental importancein con text-a w areand locationdependent mobile computing. By analogy to a traditional compass, knowledge of orientation through the ####### # ### #### attached to a mobile device enhances various applications, including ecientway- nding and navigation, directional service disco very,and \augmented-realit y" displays. Our compass infrastructure enhances the spatial inference capabilit yof the Cric ketindoor location system [20], and enables new pervasiv e computing applications.