Results 1  10
of
139
A calculus of mobile processes, I
, 1992
"... We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The ..."
Abstract

Cited by 1184 (31 self)
 Add to MetaCart
We present the acalculus, a calculus of communicating systems in which one can naturally express processes which have changing structure. Not only may the component agents of a system be arbitrarily linked, but a communication between neighbours may carry information which changes that linkage. The calculus is an extension of the process algebra CCS, following work by Engberg and Nielsen, who added mobility to CCS while preserving its algebraic properties. The rrcalculus gains simplicity by removing all distinction between variables and constants; communication links are identified by names, and computation is represented purely as the communication of names across links. After an illustrated description of how the ncalculus generalises conventional process algebras in treating mobility, several examples exploiting mobility are given in some detail. The important examples are the encoding into the ncalculus of higherorder functions (the Icalculus and combinatory algebra), the transmission of processes as values, and the representation of data structures as processes. The paper continues by presenting the algebraic theory of strong bisimilarity and strong equivalence, including a new notion of equivalence indexed by distinctionsi.e., assumptions of inequality among names. These theories are based upon a semantics in terms of a labeled transition system and a notion of strong bisimulation, both of which are expounded in detail in a companion paper. We also report briefly on workinprogress based upon the corresponding notion of weak bisimulation, in which internal actions cannot be observed.
Mobile Values, New Names, and Secure Communication
, 2001
"... We study the interaction of the "new" construct with a rich but common form of (firstorder) communication. This interaction is crucial in security protocols, which are the main motivating examples for our work; it also appears in other programminglanguage contexts. Specifically, we intro ..."
Abstract

Cited by 372 (17 self)
 Add to MetaCart
We study the interaction of the "new" construct with a rich but common form of (firstorder) communication. This interaction is crucial in security protocols, which are the main motivating examples for our work; it also appears in other programminglanguage contexts. Specifically, we introduce a simple, general extension of the pi calculus with value passing, primitive functions, and equations among terms. We develop semantics and proof techniques for this extended language and apply them in reasoning about some security protocols.
On Asynchrony in NamePassing Calculi
 In
, 1998
"... The asynchronous picalculus is considered the basis of experimental programming languages (or proposal of programming languages) like Pict, Join, and Blue calculus. However, at a closer inspection, these languages are based on an even simpler calculus, called Local (L), where: (a) only the output c ..."
Abstract

Cited by 97 (15 self)
 Add to MetaCart
(Show Context)
The asynchronous picalculus is considered the basis of experimental programming languages (or proposal of programming languages) like Pict, Join, and Blue calculus. However, at a closer inspection, these languages are based on an even simpler calculus, called Local (L), where: (a) only the output capability of names may be transmitted; (b) there is no matching or similar constructs for testing equality between names. We study the basic operational and algebraic theory of Lpi. We focus on bisimulationbased behavioural equivalences, precisely on barbed congruence. We prove two coinductive characterisations of barbed congruence in Lpi, and some basic algebraic laws. We then show applications of this theory, including: the derivability of delayed input; the correctness of an optimisation of the encoding of callbyname lambdacalculus; the validity of some laws for Join.
A calculus for orchestration of web services.
 In Proc. of ESOP’07,
, 2007
"... Abstract Serviceoriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process ca ..."
Abstract

Cited by 75 (19 self)
 Add to MetaCart
(Show Context)
Abstract Serviceoriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce C WS, a process calculus expressly designed for specifying and combining serviceoriented applications, while modelling their dynamic behaviour. We show that C WS can model all the phases of the life cycle of serviceoriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that C WS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it.
Ccpi: A constraintbased language for specifying service level agreements
 In ESOP, volume 4421 of LNCS
, 2007
"... Abstract. Service Level Agreements are a key issue in Service Oriented Computing. SLA contracts specify client requirements and service guarantees, with emphasis on Quality of Service (cost, performance, availability, etc.). In this work we propose a simple model of contracts for QoS and SLAs that a ..."
Abstract

Cited by 71 (6 self)
 Add to MetaCart
(Show Context)
Abstract. Service Level Agreements are a key issue in Service Oriented Computing. SLA contracts specify client requirements and service guarantees, with emphasis on Quality of Service (cost, performance, availability, etc.). In this work we propose a simple model of contracts for QoS and SLAs that also allows to study mechanisms for resource allocation and for joining different SLA requirements. Our language combines two basic programming paradigms: namepassing calculi and concurrent constraint programming (cc programming). Specifically, we extend cc programming by adding synchronous communication and by providing a treatment of names in terms of restriction and structural axioms closer to nominal calculi than to variables with existential quantification. In the resulting framework, SLA requirements are constraints that can be generated either by a single party or by the synchronisation of two agents. Moreover, restricting the scope of names allows for local stores of constraints, which may become global as a consequence of synchronisations. Our approach relies on a system of named constraints that equip classical constraints with a suitable algebraic structure providing a richer mechanism of constraint combination. We give reductionpreserving translations of both cc programming and the calculus of explicit fusions. 1
Bigraphs and Mobile Processes (revised)
, 2004
"... A bigraphical reactive system (BRS) involves bigraphs, in which the nesting of nodes represents locality, independently of the edges connecting them; it also allows bigraphs to reconfigure themselves. BRSs aim to provide a uniform way to model spatially distributed systems that both compute and comm ..."
Abstract

Cited by 66 (7 self)
 Add to MetaCart
A bigraphical reactive system (BRS) involves bigraphs, in which the nesting of nodes represents locality, independently of the edges connecting them; it also allows bigraphs to reconfigure themselves. BRSs aim to provide a uniform way to model spatially distributed systems that both compute and communicate. In this memorandum we develop their static and dynamic theory. In Part I we illustrate...
A picalculus based semantics for WSBPEL
 Journal of Logic and Algebraic Programming
, 2007
"... Abstract Recently, the term Web services orchestration has been introduced to address some issues related to Web services composition, that is the way of defining a complex service out of simpler ones. Several proposals for describing orchestration for business processes have been presented in the ..."
Abstract

Cited by 63 (13 self)
 Add to MetaCart
(Show Context)
Abstract Recently, the term Web services orchestration has been introduced to address some issues related to Web services composition, that is the way of defining a complex service out of simpler ones. Several proposals for describing orchestration for business processes have been presented in the last years and many of these languages make use of concepts as longrunning transactions and compensations for coping with error handling. WSBPEL 2.0, the most credited candidate for becoming a standard, provides three different mechanisms allowing to cope with abnormal situations: exception, event and compensation handling. This complexity makes it difficult to formally define the framework, thus limiting the formal reasoning about the designed applications. In this paper we advocate that three different mechanisms for error handling are not necessary and we formalize a novel orchestration language based on the idea of event notification as the unique error handling mechanism. To this end, we formally define the three BPEL mechanisms in terms of our calculus. It is possible to take advantages of this formal description in two ways. Firstly, this language represents by itself a proposal of simplification for WSBPEL 2.0 including an unambiguous specification. Secondly, an implementor of an actual WSBPEL 2.0 orchestration engine could implement simply this single mechanism providing all the remaining ones by compilation. With this attempt we intend to give a concrete contribute towards the improvement of the quality of the BPEL specification, the applicability of BPEL itself and the implementation of real orchestration engines. Finally, as a case study we consider some of the hundreds of open issues met by the WSBPEL designers and we propose a solution making use of the experience gained developing our algebra.
Explicit Fusions
, 2000
"... We introduce explicit fusions of names. An explicit fusion is a process that exists concurrently with the rest of the system and enables two names to be used interchangeably. Explicit fusions provide a smallstep account of reaction in process calculi such as the pi calculus and the fusion calcu ..."
Abstract

Cited by 63 (7 self)
 Add to MetaCart
We introduce explicit fusions of names. An explicit fusion is a process that exists concurrently with the rest of the system and enables two names to be used interchangeably. Explicit fusions provide a smallstep account of reaction in process calculi such as the pi calculus and the fusion calculus. In this respect they are similar to the explicit substitutions of Abadi, Cardelli and Curien, which do the same for the lambda calculus. In this paper, we give a technical foundation for explicit fusions. We present the piF calculus, a simple process calculus with explicit fusions, and define a strong bisimulation congruence. We study the embeddings of the fusion calculus and the pi calculus. The former is fully abstract with respect to bisimulation.
Pure bigraphs: structure and dynamics
, 2005
"... Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a c ..."
Abstract

Cited by 62 (5 self)
 Add to MetaCart
Bigraphs are graphs whose nodes may be nested, representing locality, independently of the edges connecting them. They may be equipped with reaction rules, forming a bigraphical reactive system (Brs) in which bigraphs can reconfigure themselves. Following an earlier paper describing link graphs, a constituent of bigraphs, this paper is a devoted to pure bigraphs, which in turn underlie various more refined forms. Elsewhere it is shown that behavioural analysis for Petri nets, πcalculus and mobile ambients can all be recovered in the uniform framework of bigraphs. The paper first develops the dynamic theory of an abstract structure, a wide reactive system (Wrs), of which a Brs is an instance. In this context, labelled transitions are defined in such a way that the induced bisimilarity is a congruence. This work is then specialised to Brss, whose graphical structure allows many refinements of the theory. The latter part of the paper emphasizes bigraphical theory that is relevant to the treatment of dynamics via labelled transitions. As a running example, the theory is applied to finite pure CCS, whose resulting transition system and bisimilarity are analysed in detail. The paper also mentions briefly the use of bigraphs to model pervasive computing and
History Dependent Automata
, 2001
"... In this paper we present historydependent automata (HDautomata in brief). They are an extension of ordinary automata that overcomes their limitations in dealing with historydependent formalisms. In a historydependent formalism the actions that a system can perform carry information generated i ..."
Abstract

Cited by 54 (11 self)
 Add to MetaCart
In this paper we present historydependent automata (HDautomata in brief). They are an extension of ordinary automata that overcomes their limitations in dealing with historydependent formalisms. In a historydependent formalism the actions that a system can perform carry information generated in the past history of the system. The most interesting example is calculus: channel names can be created by some actions and they can then be referenced by successive actions. Other examples are CCS with localities and the historypreserving semantics of Petri nets. Ordinary