Results 1  10
of
441
The Revised Report on the Syntactic Theories of Sequential Control and State
 THEORETICAL COMPUTER SCIENCE
, 1992
"... The syntactic theories of control and state are conservative extensions of the v calculus for equational reasoning about imperative programming facilities in higherorder languages. Unlike the simple v calculus, the extended theories are mixtures of equivalence relations and compatible congruen ..."
Abstract

Cited by 292 (37 self)
 Add to MetaCart
The syntactic theories of control and state are conservative extensions of the v calculus for equational reasoning about imperative programming facilities in higherorder languages. Unlike the simple v calculus, the extended theories are mixtures of equivalence relations and compatible congruence relations on the term language, which significantly complicates the reasoning process. In this paper we develop fully compatible equational theories of the same imperative higherorder programming languages. The new theories subsume the original calculi of control and state and satisfy the usual ChurchRosser and Standardization Theorems. With the new calculi, equational reasoning about imperative programs becomes as simple as reasoning about functional programs.
ParameterPassing and the Lambda Calculus
, 1991
"... The choice of a parameterpassing technique is an important decision in the design of a highlevel programming language. To clarify some of the semantic aspects of the decision, we develop, analyze, and compare modifications of the calculus for the most common parameterpassing techniques, i.e., ca ..."
Abstract

Cited by 216 (24 self)
 Add to MetaCart
The choice of a parameterpassing technique is an important decision in the design of a highlevel programming language. To clarify some of the semantic aspects of the decision, we develop, analyze, and compare modifications of the calculus for the most common parameterpassing techniques, i.e., callbyvalue and callbyname combined with passbyworth and passby reference, respectively. More specifically, for each parameterpassing technique we provide 1. a program rewriting semantics for a language with sideeffects and firstclass procedures based on the respective parameterpassing technique; 2. an equational theory that is derived from the rewriting semantics in a uniform manner; 3. a formal analysis of the correspondence between the calculus and the semantics; and 4. a strong normalization theorem for the imperative fragment of the theory (when applicable). A comparison of the various systems reveals that Algol's callbyname indeed satisfies the wellknown fi rule of the orig...
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 169 (57 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
Program Fragments, Linking, and Modularization
 In ACM Symp. on Principles of Programming Languages
, 1997
"... Module mechanisms have received considerable theoretical attention, but the associated concepts of separate compilation and linking have not been emphasized. Anomalous module systems have emerged in functional and objectoriented programming where software components are not separately typecheck ..."
Abstract

Cited by 153 (0 self)
 Add to MetaCart
(Show Context)
Module mechanisms have received considerable theoretical attention, but the associated concepts of separate compilation and linking have not been emphasized. Anomalous module systems have emerged in functional and objectoriented programming where software components are not separately typecheckable and compilable. In this paper we provide a context where linking can be studied, and separate compilability can be formally stated and checked. We propose a framework where each module is separately compiled to a selfcontained entity called a linkset ; we show that separately compiled, compatible modules can be safely linked together.
Confluence properties of Weak and Strong Calculi of Explicit Substitutions
 JOURNAL OF THE ACM
, 1996
"... Categorical combinators [12, 21, 43] and more recently oecalculus [1, 23], have been introduced to provide an explicit treatment of substitutions in the calculus. We reintroduce here the ingredients of these calculi in a selfcontained and stepwise way, with a special emphasis on confluence prope ..."
Abstract

Cited by 130 (7 self)
 Add to MetaCart
Categorical combinators [12, 21, 43] and more recently oecalculus [1, 23], have been introduced to provide an explicit treatment of substitutions in the calculus. We reintroduce here the ingredients of these calculi in a selfcontained and stepwise way, with a special emphasis on confluence properties. The main new results of the paper w.r.t. [12, 21, 1, 23] are the following: 1. We present a confluent weak calculus of substitutions, where no variable clashes can be feared. 2. We solve a conjecture raised in [1]: oecalculus is not confluent (it is confluent on ground terms only). This unfortunate result is "repaired" by presenting a confluent version of oecalculus, named the Envcalculus in [23], called here the confluent oecalculus.
Higherorder Unification via Explicit Substitutions (Extended Abstract)
 Proceedings of LICS'95
, 1995
"... Higherorder unification is equational unification for βηconversion. But it is not firstorder equational unification, as substitution has to avoid capture. In this paper higherorder unification is reduced to firstorder equational unification in a suitable theory: the &lambda ..."
Abstract

Cited by 109 (13 self)
 Add to MetaCart
Higherorder unification is equational unification for &beta;&eta;conversion. But it is not firstorder equational unification, as substitution has to avoid capture. In this paper higherorder unification is reduced to firstorder equational unification in a suitable theory: the &lambda;&sigma;calculus of explicit substitutions.
Termination of Term Rewriting By Semantic Labelling
 FUNDAMENTA INFORMATICAE
, 1995
"... A new kind of transformation of term rewriting systems (TRS) is proposed, depending on a choice for a model for the TRS. The labelled TRS is obtained from the original one by labelling operation symbols, possibly creating extra copies of some rules. This construction has the remarkable property t ..."
Abstract

Cited by 103 (16 self)
 Add to MetaCart
(Show Context)
A new kind of transformation of term rewriting systems (TRS) is proposed, depending on a choice for a model for the TRS. The labelled TRS is obtained from the original one by labelling operation symbols, possibly creating extra copies of some rules. This construction has the remarkable property that the labelled TRS is terminating if and only if the original TRS is terminating. Although the labelled version has more operation symbols and may have more rules (sometimes infinitely many), termination is often easier to prove for the labelled TRS than for the original one. This provides a new technique for proving termination, making classical techniques like path orders and polynomial interpretations applicable even for nonsimplifying TRS's. The requirement of having a model can slightly be weakened, yielding a remarkably simple termination proof of the system SUBST of [11] describing explicit substitution in λcalculus.
Termination of Term Rewriting: Interpretation and Type Elimination
 Journal of Symbolic Computation
, 1994
"... this paper we introduce the notion of a monotone algebra as the natural concept for semantical methods. Though we focus on `pure' TRS, the ideas are easily extended to conditional TRS, typed TRS and TRS modulo equations. We propose a classification of types of termination based upon the types o ..."
Abstract

Cited by 99 (15 self)
 Add to MetaCart
this paper we introduce the notion of a monotone algebra as the natural concept for semantical methods. Though we focus on `pure' TRS, the ideas are easily extended to conditional TRS, typed TRS and TRS modulo equations. We propose a classification of types of termination based upon the types of orderings of the underlying monotone algebras. Some remarks and examples are not claimed to be new but are included for completeness and for illustrating the setting of monotone algebras.
Combinatory Reduction Systems: introduction and survey
 THEORETICAL COMPUTER SCIENCE
, 1993
"... Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simpl ..."
Abstract

Cited by 96 (9 self)
 Add to MetaCart
(Show Context)
Combinatory Reduction Systems, or CRSs for short, were designed to combine the usual firstorder format of term rewriting with the presence of bound variables as in pure λcalculus and various typed calculi. Bound variables are also present in many other rewrite systems, such as systems with simplification rules for proof normalization. The original idea of CRSs is due to Aczel, who introduced a restricted class of CRSs and, under the assumption of orthogonality, proved confluence. Orthogonality means that the rules are nonambiguous (no overlap leading to a critical pair) and leftlinear (no global comparison of terms necessary). We introduce the class of orthogonal CRSs, illustrated with many examples, discuss its expressive power, and give an outline of a short proof of confluence. This proof is a direct generalization of Aczel's original proof, which is close to the wellknown confluence proof for λcalculus by Tait and MartinLof. There is a wellknown connection between the para...