Results 1  10
of
189
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 770 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 515 (4 self)
 Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDPrelated methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
SPUDD: Stochastic planning using decision diagrams
 In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, 1999
"... Recently, structured methods for solving factored Markov decisions processes (MDPs) with large state spaces have been proposed recently to allow dynamic programming to be applied without the need for complete state enumeration. We propose and examine a new value iteration algorithm for MDPs that use ..."
Abstract

Cited by 234 (23 self)
 Add to MetaCart
(Show Context)
Recently, structured methods for solving factored Markov decisions processes (MDPs) with large state spaces have been proposed recently to allow dynamic programming to be applied without the need for complete state enumeration. We propose and examine a new value iteration algorithm for MDPs that uses algebraic decision diagrams (ADDs) to represent value functions and policies, assuming an ADD input representation of the MDP. Dynamic programming is implemented via ADD manipulation. We demonstrate our method on a class of large MDPs (up to 63 million states) and show that significant gains can be had when compared to treestructured representations (with up to a thirtyfold reduction in the number of nodes required to represent optimal value functions). 1
Efficient Solution Algorithms for Factored MDPs
, 2003
"... This paper addresses the problem of planning under uncertainty in large Markov Decision Processes (MDPs). Factored MDPs represent a complex state space using state variables and the transition model using a dynamic Bayesian network. This representation often allows an exponential reduction in the re ..."
Abstract

Cited by 172 (3 self)
 Add to MetaCart
(Show Context)
This paper addresses the problem of planning under uncertainty in large Markov Decision Processes (MDPs). Factored MDPs represent a complex state space using state variables and the transition model using a dynamic Bayesian network. This representation often allows an exponential reduction in the representation size of structured MDPs, but the complexity of exact solution algorithms for such MDPs can grow exponentially in the representation size. In this paper, we present two approximate solution algorithms that exploit structure in factored MDPs. Both use an approximate value function represented as a linear combination of basis functions, where each basis function involves only a small subset of the domain variables. A key contribution of this paper is that it shows how the basic operations of both algorithms can be performed efficiently in closed form, by exploiting both additive and contextspecific structure in a factored MDP. A central element of our algorithms is a novel linear program decomposition technique, analogous to variable elimination in Bayesian networks, which reduces an exponentially large LP to a provably equivalent, polynomialsized one. One algorithm uses approximate linear programming, and the second approximate dynamic programming. Our dynamic programming algorithm is novel in that it uses an approximation based on maxnorm, a technique that more directly minimizes the terms that appear in error bounds for approximate MDP algorithms. We provide experimental results on problems with over 10^40 states, demonstrating a promising indication of the scalability of our approach, and compare our algorithm to an existing stateoftheart approach, showing, in some problems, exponential gains in computation time.
Policy Recognition in the Abstract Hidden Markov Model
 Journal of Artificial Intelligence Research
, 2002
"... In this paper, we present a method for recognising an agent's behaviour in dynamic, noisy, uncertain domains, and across multiple levels of abstraction. We term this problem online plan recognition under uncertainty and view it generally as probabilistic inference on the stochastic process rep ..."
Abstract

Cited by 161 (25 self)
 Add to MetaCart
(Show Context)
In this paper, we present a method for recognising an agent's behaviour in dynamic, noisy, uncertain domains, and across multiple levels of abstraction. We term this problem online plan recognition under uncertainty and view it generally as probabilistic inference on the stochastic process representing the execution of the agent's plan. Our contributions in this paper are twofold. In terms of probabilistic inference, we introduce the Abstract Hidden Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian network (DBN) structure and analyse the properties of this network. We then describe an application of the RaoBlackwellised Particle Filter to the AHMM which allows us to construct an ecient, hybrid inference method for this model. In terms of plan recognition, we propose a novel plan recognition framework based on the AHMM as the plan execution model. The RaoBlackwellised hybrid inference for AHMM can take advantage of the independence properties inherent in a model of plan execution, leading to an algorithm for online probabilistic plan recognition that scales well with the number of levels in the plan hierarchy. This illustrates that while stochastic models for plan execution can be complex, they exhibit special structures which, if exploited, can lead to efficient plan recognition algorithms. We demonstrate the usefulness of the AHMM framework via a behaviour recognition system in a complex spatial environment using distributed video surveillance data.
Symbolic Dynamic Programming for Firstorder MDPs
 In IJCAI
, 2001
"... We present a dynamic programming approach for the solution of firstorder Markov decisions processes. This technique uses an MDP whose dynamics is represented in a variant of the situation calculus allowing for stochastic actions. It produces a logical description of the optimal value function and p ..."
Abstract

Cited by 148 (4 self)
 Add to MetaCart
We present a dynamic programming approach for the solution of firstorder Markov decisions processes. This technique uses an MDP whose dynamics is represented in a variant of the situation calculus allowing for stochastic actions. It produces a logical description of the optimal value function and policy by constructing a set of firstorder formulae that minimally partition state space according to distinctions made by the value function and policy. This is achieved through the use of an operation known as decisiontheoretic regression. In effect, our algorithm performs value iteration without explicit enumeration of either the state or action spaces of the MDP. This allows problems involving relational fluents and quantification to be solved without requiring explicit state space enumeration or conversion to propositional form. 1
Approximate Policy Iteration with a Policy Language Bias
 Journal of Artificial Intelligence Research
, 2003
"... We explore approximate policy iteration (API), replacing the usual costfunction learning step with a learning step in policy space. We give policylanguage biases that enable solution of very large relational Markov decision processes (MDPs) that no previous technique can solve. ..."
Abstract

Cited by 140 (18 self)
 Add to MetaCart
(Show Context)
We explore approximate policy iteration (API), replacing the usual costfunction learning step with a learning step in policy space. We give policylanguage biases that enable solution of very large relational Markov decision processes (MDPs) that no previous technique can solve.
Equivalence notions and model minimization in Markov decision processes
, 2003
"... Many stochastic planning problems can be represented using Markov Decision Processes (MDPs). A difficulty with using these MDP representations is that the common algorithms for solving them run in time polynomial in the size of the state space, where this size is extremely large for most realworld ..."
Abstract

Cited by 117 (2 self)
 Add to MetaCart
Many stochastic planning problems can be represented using Markov Decision Processes (MDPs). A difficulty with using these MDP representations is that the common algorithms for solving them run in time polynomial in the size of the state space, where this size is extremely large for most realworld planning problems of interest. Recent AI research has addressed this problem by representing the MDP in a factored form. Factored MDPs, however, are not amenable to traditional solution methods that call for an explicit enumeration of the state space. One familiar way to solve MDP problems with very large state spaces is to form a reduced (or aggregated) MDP with the same properties as the original MDP by combining “equivalent ” states. In this paper, we discuss applying this approach to solving factored MDP problems—we avoid enumerating the state space by describing large blocks of “equivalent” states in factored form, with the block descriptions being inferred directly from the original factored representation. The resulting reduced MDP may have exponentially fewer states than the original factored MDP, and can then be solved using traditional methods. The reduced MDP found depends on the notion of equivalence between states used in the aggregation. The notion of equivalence chosen will be fundamental in designing and analyzing
Exploiting Structure to Efficiently Solve Large Scale Partially Observable Markov Decision Processes
, 2005
"... Partially observable Markov decision processes (POMDPs) provide a natural and principled framework to model a wide range of sequential decision making problems under uncertainty. To date, the use of POMDPs in realworld problems has been limited by the poor scalability of existing solution algorithm ..."
Abstract

Cited by 91 (6 self)
 Add to MetaCart
Partially observable Markov decision processes (POMDPs) provide a natural and principled framework to model a wide range of sequential decision making problems under uncertainty. To date, the use of POMDPs in realworld problems has been limited by the poor scalability of existing solution algorithms, which can only solve problems with up to ten thousand states. In fact, the complexity of finding an optimal policy for a finitehorizon discrete POMDP is PSPACEcomplete. In practice, two important sources of intractability plague most solution algorithms: large policy spaces and large state spaces. On the other hand,