Results 1  10
of
46
Observational logic
 IN ALGEBRAIC METHODOLOGY AND SOFTWARE TECHNOLOGY (AMAST'98
, 1999
"... We present an institution of observational logic suited for statebased systems specifications. The institution is based on the notion of an observational signature (which incorporates the declaration of a distinguished set of observers) and on observational algebras whose operations are required ..."
Abstract

Cited by 57 (10 self)
 Add to MetaCart
We present an institution of observational logic suited for statebased systems specifications. The institution is based on the notion of an observational signature (which incorporates the declaration of a distinguished set of observers) and on observational algebras whose operations are required to be compatible with the indistinguishability relation determined by the given observers. In particular, we introduce a homomorphism concept for observational algebras which adequately expresses observational relationships between algebras. Then we consider a flexible notion of observational signature morphism which guarantees the satisfaction condition of institutions w.r.t. observational satisfaction of arbitrary firstorder sentences. From the proof theoretical point of view we construct a sound and complete proof system for the observational consequence relation. Then we consider structured observational specifications and we provide a sound and complete proof system for such specifications by using a general, institutionindependent result of [6].
Interpolation in Grothendieck Institutions
 THEORETICAL COMPUTER SCIENCE
, 2003
"... It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which have recently emerged as an important mathematical structure underlying heterogenous multilogic specification. Our main result can be used in the applications in several different ways. It can be used to establish interpolation properties for multilogic Grothendieck institutions, but also to lift interpolation properties from unsorted logics to their many sorted variants. The importance of the latter resides in the fact that, unlike other structural properties of logics, many sorted interpolation is a nontrivial generalisation of unsorted interpolation. The concepts, results, and the applications discussed in this paper are illustrated with several examples from conventional logic and algebraic specification theory.
Towards Heterogeneous Specifications
 In Frontiers of Combining Systems FroCoS'98, Applied Logic Series
, 1998
"... this paper. 2 Institutions ..."
Development Graphs  Proof Management for Structured Specifications
, 2005
"... Development graphs are a tool for dealing with structured specifications in a formal program development in order to ease the management of change and reusing proofs. In this work, we extend development graphs with hiding (e.g. hidden operations). Hiding is a particularly difficult to realize operat ..."
Abstract

Cited by 29 (19 self)
 Add to MetaCart
Development graphs are a tool for dealing with structured specifications in a formal program development in order to ease the management of change and reusing proofs. In this work, we extend development graphs with hiding (e.g. hidden operations). Hiding is a particularly difficult to realize operation, since it does not admit such a good decomposition of the involved specifications as other structuring operations do. We develop both a semantics and proof rules for development graphs with hiding. The rules are proven to be sound, and also complete relative to an oracle for conservative extensions. We also show that an absolutely complete set of rules cannot exist. The whole framework is developed in a way independent of the underlying logical system (and thus also does not prescribe the nature of the parts of a specification that may be hidden). We also show how various other logic independent specification formalisms can be mapped into development graphs; thus, development graphs can serve as a kernel formalism for management of proofs and of change.
Modular construction of modal logics
 Concurrency Theory, CONCUR 04, volume 3170 of Lect. Notes Comput. Sci
, 2004
"... Abstract. We present a modular approach to defining logics for a wide variety of statebased systems. We use coalgebras to model the behaviour of systems, and modal logics to specify behavioural properties of systems. We show that the syntax, semantics and proof systems associated to such logics can ..."
Abstract

Cited by 24 (6 self)
 Add to MetaCart
(Show Context)
Abstract. We present a modular approach to defining logics for a wide variety of statebased systems. We use coalgebras to model the behaviour of systems, and modal logics to specify behavioural properties of systems. We show that the syntax, semantics and proof systems associated to such logics can all be derived in a modular way. Moreover, we show that the logics thus obtained inherit soundness, completeness and expressiveness properties from their building blocks. We apply these techniques to derive sound, complete and expressive logics for a wide variety of probabilistic systems. 1
Foundations of Heterogeneous Specification
"... We provide a semantic basis for heterogeneous specifications that not only involve different logics, but also different kinds of translations between these. We show that Grothendieck institutions based on spans of (co)morphisms can serve as a unifying framework providing a simple but powerful semant ..."
Abstract

Cited by 17 (3 self)
 Add to MetaCart
(Show Context)
We provide a semantic basis for heterogeneous specifications that not only involve different logics, but also different kinds of translations between these. We show that Grothendieck institutions based on spans of (co)morphisms can serve as a unifying framework providing a simple but powerful semantics for heterogeneous specification.
Proof Systems for Structured Specifications and Their Refinements
, 1999
"... Reasoning about specifications is one of the fundamental activities in the process of formal program development. This ranges from proving the consequences of a specification, during the prototyping or testing phase for a requirements speci cation, to proving the correctness of refinements (or imple ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
Reasoning about specifications is one of the fundamental activities in the process of formal program development. This ranges from proving the consequences of a specification, during the prototyping or testing phase for a requirements speci cation, to proving the correctness of refinements (or implementations) of specifications. The main proof techniques for algebraic specifications have their origin in equational Horn logic and term rewriting. These proof methods have been well studied in the case of nonstructured speci cations (see Chapters 9 and 10). For large systems of specifications built using the structuring operators of speci cation languages, relatively few proof techniques have been developed yet; for such proof systems, see [SB83, HST94, Wir91, Far92, Cen94, HWB97]. In this chapter we focus on proof systems designed particularly for modular specifications. The aim is to concentrate on the structuring concepts, while abstracting as much as possible from the par...
Heterogeneous development graphs and heterogeneous borrowing
 In M. Nielsen (Ed.) Foundations of Software Science and Computation Structures (FOSSACS02
, 2002
"... Abstract. Development graphs are a tool for dealing with structured specifications in a formal program development in order to ease the management of change and reusing proofs. Often, different aspects of a software system have to be specified in different logics, since the construction of a huge lo ..."
Abstract

Cited by 13 (7 self)
 Add to MetaCart
(Show Context)
Abstract. Development graphs are a tool for dealing with structured specifications in a formal program development in order to ease the management of change and reusing proofs. Often, different aspects of a software system have to be specified in different logics, since the construction of a huge logic covering all needed features would be too complex to be feasible. Therefore, we introduce heterogeneous development graphs as a means to cope with heterogeneous specifications. We cover both the semantics and the proof theory of heterogeneous development graphs. A proof calculus can be obtained either by combining proof calculi for the individual logics, or by representing these in some “universal ” logic like higherorder logic in a coherent way and then “borrowing” its calculus for the heterogeneous language. 1
The OntoLogical Translation Graph
"... We present an overview of the landscape of ontology languages, mostly pertaining to the firstorder paradigm. In particular, we present a uniform formalisation of these languages based on the institution theoretical framework, allowing a systematic treatment and analysis of the translational relatio ..."
Abstract

Cited by 11 (10 self)
 Add to MetaCart
We present an overview of the landscape of ontology languages, mostly pertaining to the firstorder paradigm. In particular, we present a uniform formalisation of these languages based on the institution theoretical framework, allowing a systematic treatment and analysis of the translational relationships between the various languages and a general analysis of properties of such translations. We also discuss the importance of language translation from the point of view of ontological modularity and logical pluralism, and for the borrowing of tools and reasoners between languages.