Results 1 - 10
of
480
An introduction to variable and feature selection
- Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract
-
Cited by 1352 (16 self)
- Add to MetaCart
(Show Context)
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
A Comparative Study on Feature Selection in Text Categorization
, 1997
"... This paper is a comparative study of feature selection methods in statistical learning of text categorization. The focus is on aggressive dimensionality reduction. Five methods were evaluated, including term selection based on document frequency (DF), information gain (IG), mutual information (MI), ..."
Abstract
-
Cited by 1320 (15 self)
- Add to MetaCart
(Show Context)
This paper is a comparative study of feature selection methods in statistical learning of text categorization. The focus is on aggressive dimensionality reduction. Five methods were evaluated, including term selection based on document frequency (DF), information gain (IG), mutual information (MI), a Ø 2 -test (CHI), and term strength (TS). We found IG and CHI most effective in our experiments. Using IG thresholding with a knearest neighbor classifier on the Reuters corpus, removal of up to 98% removal of unique terms actually yielded an improved classification accuracy (measured by average precision) . DF thresholding performed similarly. Indeed we found strong correlations between the DF, IG and CHI values of a term. This suggests that DF thresholding, the simplest method with the lowest cost in computation, can be reliably used instead of IG or CHI when the computation of these measures are too expensive. TS compares favorably with the other methods with up to 50% vocabulary redu...
Multitask Learning,”
, 1997
"... Abstract. Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for ..."
Abstract
-
Cited by 677 (6 self)
- Add to MetaCart
Abstract. Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new evidence that MTL in backprop nets discovers task relatedness without the need of supervisory signals, and presents new results for MTL with k-nearest neighbor and kernel regression. In this paper we demonstrate multitask learning in three domains. We explain how multitask learning works, and show that there are many opportunities for multitask learning in real domains. We present an algorithm and results for multitask learning with case-based methods like k-nearest neighbor and kernel regression, and sketch an algorithm for multitask learning in decision trees. Because multitask learning works, can be applied to many different kinds of domains, and can be used with different learning algorithms, we conjecture there will be many opportunities for its use on real-world problems.
Selection of relevant features and examples in machine learning
- ARTIFICIAL INTELLIGENCE
, 1997
"... In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been mad ..."
Abstract
-
Cited by 606 (2 self)
- Add to MetaCart
In this survey, we review work in machine learning on methods for handling data sets containing large amounts of irrelevant information. We focus on two key issues: the problem of selecting relevant features, and the problem of selecting relevant examples. We describe the advances that have been made on these topics in both empirical and theoretical work in machine learning, and we present a general framework that we use to compare different methods. We close with some challenges for future work in this area.
A Bayesian approach to filtering junk E-mail
- PAPERS FROM THE 1998 WORKSHOP, AAAI
, 1998
"... In addressing the growing problem of junk E-mail on the Internet, we examine methods for the automated construction of filters to eliminate such unwanted messages from a user’s mail stream. By casting this problem in a decision theoretic framework, we are able to make use of probabilistic learning m ..."
Abstract
-
Cited by 545 (6 self)
- Add to MetaCart
In addressing the growing problem of junk E-mail on the Internet, we examine methods for the automated construction of filters to eliminate such unwanted messages from a user’s mail stream. By casting this problem in a decision theoretic framework, we are able to make use of probabilistic learning methods in conjunction with a notion of differential misclassification cost to produce filters Which are especially appropriate for the nuances of this task. While this may appear, at first, to be a straight-forward text classification problem, we show that by considering domain-specific features of this problem in addition to the raw text of E-mail messages, we can produce much more accurate filters. Finally, we show the efficacy of such filters in a real world usage scenario, arguing that this technology is mature enough for deployment.
Hierarchically Classifying Documents Using Very Few Words
, 1997
"... The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text ..."
Abstract
-
Cited by 521 (8 self)
- Add to MetaCart
(Show Context)
The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text classification where the there is a large number of classes and a huge number of relevant features needed to distinguish between them. We propose an approach that utilizes the hierarchical topic structure to decompose the classification task into a set of simpler problems, one at each node in the classification tree. As we show, each of these smaller problems can be solved accurately by focusing only on a very small set of features, those relevant to the task at hand. This set of relevant features varies widely throughout the hierarchy, so that, while the overall relevant feature set may be large, each classifier only examines a small subset. The use of reduced feature sets allows us to util...
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract
-
Cited by 408 (0 self)
- Add to MetaCart
(Show Context)
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Learning to Extract Symbolic Knowledge from the World Wide Web
, 1998
"... The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable world wide knowledge base whose content mirrors that of the World Wide Web. Such a ..."
Abstract
-
Cited by 403 (29 self)
- Add to MetaCart
(Show Context)
The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable world wide knowledge base whose content mirrors that of the World Wide Web. Such a
A review of feature selection techniques in bioinformatics
- BIOINFORMATICS
, 2007
"... Feature selection techniques have become an apparent need in many bioinformatics applications. In addition to the large pool of techniques that have already been developed in the machine learning and data mining fields, specific applications in bioinformatics have led to a wealth of newly proposed t ..."
Abstract
-
Cited by 358 (10 self)
- Add to MetaCart
Feature selection techniques have become an apparent need in many bioinformatics applications. In addition to the large pool of techniques that have already been developed in the machine learning and data mining fields, specific applications in bioinformatics have led to a wealth of newly proposed techniques. In this paper, we make the interested reader aware of the possibilities of feature selection, providing a basic taxonomy of feature selection techniques, and discussing their use, variety and potential in a number of both common as well as upcoming bioinformatics applications.
Discriminative Reranking for Natural Language Parsing
, 2005
"... This article considers approaches which rerank the output of an existing probabilistic parser. The base parser produces a set of candidate parses for each input sentence, with associated probabilities that define an initial ranking of these parses. A second model then attempts to improve upon this i ..."
Abstract
-
Cited by 333 (9 self)
- Add to MetaCart
This article considers approaches which rerank the output of an existing probabilistic parser. The base parser produces a set of candidate parses for each input sentence, with associated probabilities that define an initial ranking of these parses. A second model then attempts to improve upon this initial ranking, using additional features of the tree as evidence. The strength of our approach is that it allows a tree to be represented as an arbitrary set of features, without concerns about how these features interact or overlap and without the need to define a derivation or a generative model which takes these features into account. We introduce a new method for the reranking task, based on the boosting approach to ranking problems described in Freund et al. (1998). We apply the boosting method to parsing the Wall Street Journal treebank. The method combined the log-likelihood under a baseline model (that of Collins [1999]) with evidence from an additional 500,000 features over parse trees that were not included in the original model. The new model achieved 89.75 % F-measure, a 13 % relative decrease in F-measure error over the baseline model’s score of 88.2%. The article also introduces a new algorithm for the boosting approach which takes advantage of the sparsity of the feature space in the parsing data. Experiments show significant efficiency gains for the new algorithm over the obvious implementation of the boosting approach. We argue that the method is an appealing alternative—in terms of both simplicity and efficiency—to work on feature selection methods within log-linear (maximum-entropy) models. Although the experiments in this article are on natural language parsing (NLP), the approach should be applicable to many other NLP problems which are naturally framed as ranking tasks, for example, speech recognition, machine translation, or natural language generation.