Results 1 - 10
of
53
Universal coalgebra: a theory of systems
, 2000
"... In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certa ..."
Abstract
-
Cited by 408 (42 self)
- Add to MetaCart
In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certain types of automata and more generally, for (transition and dynamical) systems. An important property of initial algebras is that they satisfy the familiar principle of induction. Such a principle was missing for coalgebras until the work of Aczel (Non-Well-Founded sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stanford, 1988) on a theory of non-wellfounded sets, in which he introduced a proof principle nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally stemming from the world of concurrent programming languages. Using the notion of coalgebra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally dual to that of congruence on algebras. Thus, the three basic notions of universal algebra: algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, homomorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
Towards a Mathematical Operational Semantics
- In Proc. 12 th LICS Conf
, 1997
"... We present a categorical theory of `well-behaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transforma ..."
Abstract
-
Cited by 173 (8 self)
- Add to MetaCart
We present a categorical theory of `well-behaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transformation of a suitable general form, depending on functorial notions of syntax and behaviour, then one gets both an operational model and a canonical, internally fully abstract denotational model for free; moreover, both models satisfy the operational rules. The theory is based on distributive laws and bialgebras; it specialises to the known classes of well-behaved rules for structural operational semantics, such as GSOS.
Coalgebraic Logic
- Annals of Pure and Applied Logic
, 1999
"... We present a generalization of modal logic to logical systems which are interpreted on coalgebras of functors on sets. The leading idea is that infinitary modal logic contains characterizing formulas. That is, every model-world pair is characterized up to bisimulation by an infinitary formula. The ..."
Abstract
-
Cited by 110 (0 self)
- Add to MetaCart
(Show Context)
We present a generalization of modal logic to logical systems which are interpreted on coalgebras of functors on sets. The leading idea is that infinitary modal logic contains characterizing formulas. That is, every model-world pair is characterized up to bisimulation by an infinitary formula. The point of our generalization is to understand this on a deeper level. We do this by studying a frangment of infinitary modal logic which contains the characterizing formulas and is closed under infinitary conjunction and an operation called 4. This fragment generalizes to a wide range of coalgebraic logics. We then apply the characterization result to get representation theorems for final coalgebras in terms of maximal elements of ordered algebras. The end result is that the formulas of coalgebraic logics can be viewed as approximations to the elements of the final coalgebra. Keywords: infinitary modal logic, characterization theorem, functor on sets, coalgebra, greatest fixed point. 1 Intr...
On Generalised Coinduction and Probabilistic Specification Formats: Distributive Laws in Coalgebraic Modelling
, 2004
"... ..."
Rewriting Logic Semantics: From Language Specifications to Formal Analysis Tools
- In Proceedings of the IJCAR 2004. LNCS
, 2004
"... Abstract. Formal semantic definitions of concurrent languages, when specified in a well-suited semantic framework and supported by generic and efficient formal tools, can be the basis of powerful software analysis tools. Such tools can be obtained for free from the semantic definitions; in our exper ..."
Abstract
-
Cited by 54 (12 self)
- Add to MetaCart
(Show Context)
Abstract. Formal semantic definitions of concurrent languages, when specified in a well-suited semantic framework and supported by generic and efficient formal tools, can be the basis of powerful software analysis tools. Such tools can be obtained for free from the semantic definitions; in our experience in just the few weeks required to define a language’s semantics even for large languages like Java. By combining, yet distinguishing, both equations and rules, rewriting logic semantic definitions unify both the semantic equations of equational semantics (in their higher-order denotational version or their first-order algebraic counterpart) and the semantic rules of SOS. Several limitations of both SOS and equational semantics are thus overcome within this unified framework. By using a high-performance implementation of rewriting logic such as Maude, a language’s formal specification can be automatically transformed into an efficient interpreter. Furthermore, by using Maude’s breadth first search command, we also obtain for free a semi-decision procedure for finding failures of safety properties; and by using Maude’s LTL model checker, we obtain, also for free, a decision procedure for LTL properties of finite-state programs. These possibilities, and the competitive performance of the analysis tools thus obtained, are illustrated by means of a concurrent Caml-like language; similar experience with Java (source and JVM) programs is also summarized. 1
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract
-
Cited by 51 (19 self)
- Add to MetaCart
(Show Context)
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a built-in notion of bisimulation. We show how
Introduction to Coalgebra. Towards mathematics of states and oberservations. Available via http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf,
, 2005
"... ..."
Semantical Principles in the Modal Logic of Coalgebraic
"... Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natur ..."
Abstract
-
Cited by 33 (8 self)
- Add to MetaCart
Coalgebras for a functor on the category of sets subsume many formulations of the notion of transition system, including labelled transition systems, Kripke models, Kripke frames and many types of automata. This paper presents a multimodal language which is bisimulation invariant and (under a natural completeness condition) expressive enough to characterise elements of the underlying state space up to bisimulation. Like Moss' coalgebraic logic, the theory can be applied to an arbitrary signature functor on the category of sets. Also, an upper bound for the size of conjunctions and disjunctions needed to obtain characteristic formulas is given.
On the Foundations of Final Coalgebra Semantics: non-well-founded sets, partial orders, metric spaces
, 1998
"... ..."
An abstract coalgebraic approach to process equivalence for well-behaved operational semantics
, 2004
"... This thesis is part of the programme aimed at finding a mathematical theory of well-behaved structural operational semantics. General and basic results shown in 1997 in a seminal paper by Turi and Plotkin are extended in two directions, aiming at greater expressivity of the framework. The so-called ..."
Abstract
-
Cited by 24 (5 self)
- Add to MetaCart
This thesis is part of the programme aimed at finding a mathematical theory of well-behaved structural operational semantics. General and basic results shown in 1997 in a seminal paper by Turi and Plotkin are extended in two directions, aiming at greater expressivity of the framework. The so-called bialgebraic framework of Turi and Plotkin is an abstract generalization of the well-known structural operational semantics format GSOS, and provides a theory of operational semantic rules for which bisimulation equivalence is a congruence. The first part of this thesis aims at extending that framework to cover other operational equivalences and preorders (e.g. trace equivalence), known collectively as the van Glabbeek spectrum. To do this, a novel coalgebraic approach to relations on processes is desirable, since the usual approach to coalgebraic bisimulations as spans of coalgebras does not extend easily to other known equivalences on processes. Such an approach, based on fibrations of test