Results 1  10
of
150
A column approximate minimum degree ordering algorithm
, 2000
"... Sparse Gaussian elimination with partial pivoting computes the factorization PAQ = LU of a sparse matrix A, where the row ordering P is selected during factorization using standard partial pivoting with row interchanges. The goal is to select a column preordering, Q, based solely on the nonzero patt ..."
Abstract

Cited by 319 (54 self)
 Add to MetaCart
Sparse Gaussian elimination with partial pivoting computes the factorization PAQ = LU of a sparse matrix A, where the row ordering P is selected during factorization using standard partial pivoting with row interchanges. The goal is to select a column preordering, Q, based solely on the nonzero pattern of A such that the factorization remains as sparse as possible, regardless of the subsequent choice of P. The choice of Q can have a dramatic impact on the number of nonzeros in L and U. One scheme for determining a good column ordering for A is to compute a symmetric ordering that reduces fillin in the Cholesky factorization of ATA. This approach, which requires the sparsity structure of ATA to be computed, can be expensive both in
A supernodal approach to sparse partial pivoting
 SIAM Journal on Matrix Analysis and Applications
, 1999
"... We investigate several ways to improve the performance of sparse LU factorization with partial pivoting, as used to solve unsymmetric linear systems. To perform most of the numerical computation in dense matrix kernels, we introduce the notion of unsymmetric supernodes. To better exploit the memory ..."
Abstract

Cited by 263 (25 self)
 Add to MetaCart
We investigate several ways to improve the performance of sparse LU factorization with partial pivoting, as used to solve unsymmetric linear systems. To perform most of the numerical computation in dense matrix kernels, we introduce the notion of unsymmetric supernodes. To better exploit the memory hierarchy, weintroduce unsymmetric supernodepanel updates and twodimensional data partitioning. To speed up symbolic factorization, we use Gilbert and Peierls's depth rst search with Eisenstat and Liu's symmetric structural reductions. We have implemented a sparse LU code using all these ideas. We present experiments demonstrating that it is signi cantly faster than earlier partial pivoting codes. We also compare performance with Umfpack, which uses a multifrontal approach; our code is usually faster.
Solving unsymmetric sparse systems of linear equations with PARDISO
 Journal of Future Generation Computer Systems
, 2004
"... Supernode partitioning for unsymmetric matrices together with complete block diagonal supernode pivoting and asynchronous computation can achieve high gigaflop rates for parallel sparse LU factorization on shared memory parallel computers. The progress in weighted graph matching algorithms helps to ..."
Abstract

Cited by 195 (11 self)
 Add to MetaCart
(Show Context)
Supernode partitioning for unsymmetric matrices together with complete block diagonal supernode pivoting and asynchronous computation can achieve high gigaflop rates for parallel sparse LU factorization on shared memory parallel computers. The progress in weighted graph matching algorithms helps to extend these concepts further and unsymmetric prepermutation of rows is used to place large matrix entries on the diagonal. Complete block diagonal supernode pivoting allows dynamical interchanges of columns and rows during the factorization process. The level3 BLAS efficiency is retained and an advanced twolevel left–right looking scheduling scheme results in good speedup on SMP machines. These algorithms have been integrated into the recent unsymmetric version of the PARDISO solver. Experiments demonstrate that a wide set of unsymmetric linear systems can be solved and high performance is consistently achieved for large sparse unsymmetric matrices from real world applications. Key words: Computational sciences, numerical linear algebra, direct solver, unsymmetric linear systems
A Combined Unifrontal/Multifrontal Method for Unsymmetric Sparse Matrices
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1995
"... We discuss the organization of frontal matrices in multifrontal methods for the solution of large sparse sets of unsymmetric linear equations. In the multifrontal method, work on a frontal matrix can be suspended, the frontal matrix can be stored for later reuse, and a new frontal matrix can be g ..."
Abstract

Cited by 110 (14 self)
 Add to MetaCart
We discuss the organization of frontal matrices in multifrontal methods for the solution of large sparse sets of unsymmetric linear equations. In the multifrontal method, work on a frontal matrix can be suspended, the frontal matrix can be stored for later reuse, and a new frontal matrix can be generated. There are thus several frontal matrices stored during the factorization and one or more or these are assembled (summed) when creating a new frontal matrix. Although this means that arbitrary sparsity patterns can be handled efficiently, extra work is required to sum the frontal matrices together and can be costly because indirect addressing is required. The (uni)frontal method avoids this extra work by factorizing the matrix with a single frontal matrix. Rows and columns are added to the frontal matrix, and pivot rows and columns are removed. Data movement is simpler, but higher fillin can result if the matrix cannot be permuted into a variableband form with small profile...
A column preordering strategy for the unsymmetricpattern multifrontal method
 ACM Transactions on Mathematical Software
, 2004
"... A new method for sparse LU factorization is presented that combines a column preordering strategy with a rightlooking unsymmetricpattern multifrontal numerical factorization. The column ordering is selected to give a good a priori upper bound on fillin and then refined during numerical factoriza ..."
Abstract

Cited by 94 (5 self)
 Add to MetaCart
(Show Context)
A new method for sparse LU factorization is presented that combines a column preordering strategy with a rightlooking unsymmetricpattern multifrontal numerical factorization. The column ordering is selected to give a good a priori upper bound on fillin and then refined during numerical factorization (while preserving the bound). Pivot rows are selected to maintain numerical stability and to preserve sparsity. The method analyzes the matrix and automatically selects one of three preordering and pivoting strategies. The number of nonzeros in the LU factors computed by the method is typically less than or equal to those found by a wide range of unsymmetric sparse LU factorization methods, including leftlooking methods and prior multifrontal methods.
A numerical evaluation of sparse direct solvers for the solution of large sparse, symmetric linear systems of equations
, 2005
"... ..."
Sparse Gaussian Elimination on High Performance Computers
, 1996
"... This dissertation presents new techniques for solving large sparse unsymmetric linear systems on high performance computers, using Gaussian elimination with partial pivoting. The efficiencies of the new algorithms are demonstrated for matrices from various fields and for a variety of high performan ..."
Abstract

Cited by 43 (7 self)
 Add to MetaCart
This dissertation presents new techniques for solving large sparse unsymmetric linear systems on high performance computers, using Gaussian elimination with partial pivoting. The efficiencies of the new algorithms are demonstrated for matrices from various fields and for a variety of high performance machines. In the first part we discuss optimizations of a sequential algorithm to exploit the memory hierarchies that exist in most RISCbased superscalar computers. We begin with the leftlooking supernodecolumn algorithm by Eisenstat, Gilbert and Liu, which includes Eisenstat and Liu's symmetric structural reduction for fast symbolic factorization. Our key contribution is to develop both numeric and symbolic schemes to perform supernodepanel updates to achieve better data reuse in cache and floatingpoint register...
Recent Advances in Direct Methods for Solving Unsymmetric Sparse Systems of Linear Equations
, 2001
"... ..."
(Show Context)
WSMP: Watson sparse matrix package part I—direct solution of symmetric sparse system
 Center, Yorktown Heights
, 2010
"... ..."
Efficient sparse LU factorization with partial pivoting on distributed memory architectures
 IEEE Trans. Parallel and Distributed Systems
, 1998
"... Abstract—A sparse LU factorization based on Gaussian elimination with partial pivoting (GEPP) is important to many scientific applications, but it is still an open problem to develop a high performance GEPP code on distributed memory machines. The main difficulty is that partial pivoting operations ..."
Abstract

Cited by 33 (11 self)
 Add to MetaCart
Abstract—A sparse LU factorization based on Gaussian elimination with partial pivoting (GEPP) is important to many scientific applications, but it is still an open problem to develop a high performance GEPP code on distributed memory machines. The main difficulty is that partial pivoting operations dynamically change computation and nonzero fillin structures during the elimination process. This paper presents an approach called S * for parallelizing this problem on distributed memory machines. The S * approach adopts static symbolic factorization to avoid runtime control overhead, incorporates 2D L/U supernode partitioning and amalgamation strategies to improve caching performance, and exploits irregular task parallelism embedded in sparse LU using asynchronous computation scheduling. The paper discusses and compares the algorithms using 1D and 2D data mapping schemes, and presents experimental studies on CrayT3D and T3E. The performance results for a set of nonsymmetric benchmark matrices are very encouraging, and S* has achieved up to 6.878 GFLOPS on 128 T3E nodes. To the best of our knowledge, this is the highest performance ever achieved for this challenging problem and the previous record was 2.583 GFLOPS on shared memory machines [8].