Results 1 - 10
of
2,404
Fast approximate energy minimization via graph cuts
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract
-
Cited by 2120 (61 self)
- Add to MetaCart
(Show Context)
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed. The first move we consider is an α-βswap: for a pair of labels α, β, this move exchanges the labels between an arbitrary set of pixels labeled α and another arbitrary set labeled β. Our first algorithm generates a labeling such that there is no swap move that decreases the energy. The second move we consider is an α-expansion: for a label α, this move assigns an arbitrary set of pixels the label α. Our second
Performance of optical flow techniques
- INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1994
"... While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, ..."
Abstract
-
Cited by 1325 (32 self)
- Add to MetaCart
While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of existing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly cited optical flow techniques, including instances of differential, matching, energy-based and phase-based methods. Our comparisons are primarily empirical, and concentrate on the accuracy, reliability and density of the velocity measurements; they show that performance can differ significantly among the techniques we implemented.
Plenoptic Modeling: An Image-Based Rendering System
, 1995
"... Image-based rendering is a powerful new approach for generating real-time photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for image-based ..."
Abstract
-
Cited by 760 (20 self)
- Add to MetaCart
Image-based rendering is a powerful new approach for generating real-time photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for image-based rendering paradigms, such as morphing and view interpolation. The plenoptic function is a parameterized function for describing everything that is visible from a given point in space. We present an image-based rendering system based on sampling, reconstructing, and resampling the plenoptic function. In addition, we introduce a novel visible surface algorithm and a geometric invariant for cylindrical projections that is equivalent to the epipolar constraint defined for planar projections.
Snakes, Shapes, and Gradient Vector Flow
- IEEE TRANSACTIONS ON IMAGE PROCESSING
, 1998
"... Snakes, or active contours, are used extensively in computer vision and image processing applications, particularly to locate object boundaries. Problems associated with initialization and poor convergence to boundary concavities, however, have limited their utility. This paper presents a new extern ..."
Abstract
-
Cited by 755 (16 self)
- Add to MetaCart
Snakes, or active contours, are used extensively in computer vision and image processing applications, particularly to locate object boundaries. Problems associated with initialization and poor convergence to boundary concavities, however, have limited their utility. This paper presents a new external force for active contours, largely solving both problems. This external force, which we call gradient vector flow (GVF), is computed as a diffusion of the gradient vectors of a gray-level or binary edge map derived from the image. It differs fundamentally from traditional snake external forces in that it cannot be written as the negative gradient of a potential function, and the corresponding snake is formulated directly from a force balance condition rather than a variational formulation. Using several two-dimensional (2-D) examples and one three-dimensional (3-D) example, we show that GVF has a large capture range and is able to move snakes into boundary concavities.
Object Tracking: A Survey
, 2006
"... The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns o ..."
Abstract
-
Cited by 701 (7 self)
- Add to MetaCart
The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Hierarchical model-based motion estimation
, 1992
"... This paper describes a hierarchical estimation framework for the computation of diverse representations of motion information. The key features of the resulting framework (or family of algorithms) a,re a global model that constrains the overall structure of the motion estimated, a local rnodel that ..."
Abstract
-
Cited by 664 (15 self)
- Add to MetaCart
This paper describes a hierarchical estimation framework for the computation of diverse representations of motion information. The key features of the resulting framework (or family of algorithms) a,re a global model that constrains the overall structure of the motion estimated, a local rnodel that is used in the estimation process, and a coa,rse-fine refinement strategy. Four specific motion models: affine flow, planar surface flow, rigid body motion, and general optical flow, are described along with their application to specific examples.
Face Recognition Based on Fitting a 3D Morphable Model
- IEEE TRANS. PATTERN ANAL. MACH. INTELL
, 2003
"... This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image formation in 3D ..."
Abstract
-
Cited by 551 (19 self)
- Add to MetaCart
(Show Context)
This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image formation in 3D space, using computer graphics, and it estimates 3D shape and texture of faces from single images. The estimate is achieved by fitting a statistical, morphable model of 3D faces to images. The model is learned from a set of textured 3D scans of heads. We describe the construction of the morphable model, an algorithm to fit the model to images, and a framework for face identification. In this framework, faces are represented by model parameters for 3D shape and texture. We present results obtained with 4,488 images from the publicly available CMU-PIE database and 1,940 images from the FERET database.
High Accuracy Optical Flow Estimation Based on a Theory for Warping
, 2004
"... We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuity-preserving spatio-temporal smoothness constraint. ..."
Abstract
-
Cited by 509 (45 self)
- Add to MetaCart
(Show Context)
We study an energy functional for computing optical flow that combines three assumptions: a brightness constancy assumption, a gradient constancy assumption, and a discontinuity-preserving spatio-temporal smoothness constraint.
Human Motion Analysis: A Review
- Computer Vision and Image Understanding
, 1999
"... Human motion analysis is receiving increasing at-tention from computer vision researchers. This inter-est is motivated by a wide spectrum of applications, such as athletic performance analysis, surveillance, man-machine interfaces, content-based image storage and retrieval, and video conferencing. T ..."
Abstract
-
Cited by 414 (10 self)
- Add to MetaCart
(Show Context)
Human motion analysis is receiving increasing at-tention from computer vision researchers. This inter-est is motivated by a wide spectrum of applications, such as athletic performance analysis, surveillance, man-machine interfaces, content-based image storage and retrieval, and video conferencing. This paper gives an overview of the various tasks involved in motion analysis of the human body. We focus on three major areas related to interpreting human motion: 1) motion analysis involving human body parts, 2) tracking of human motion wing single or multiple cameras, and 8) recognizing human activities from image sequences. Motion analysis of human body parts involves the low-level segmentation of the human body into segments connected by joints, and recovers the 3D structure of the human body using its 20 projections over a se-quence of images. Ilfacking human motion wing a single or multiple cameras focuses on higher-level pro-cessing, in which moving humans are tracked without identifying specific parts of the body structure. After successfully matching the moving human image)?om one frame to another in image sequences, understand-ing the human movements or activities comes natu-rally, which leads to our discussion of recognizing hu-man activities. The review is illustrated by ezamples. 1
A database and evaluation methodology for optical flow
- In Proceedings of the IEEE International Conference on Computer Vision
, 2007
"... The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex n ..."
Abstract
-
Cited by 407 (22 self)
- Add to MetaCart
(Show Context)
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at