Results 1  10
of
400
Adaptive Constraint Satisfaction
 WORKSHOP OF THE UK PLANNING AND SCHEDULING
, 1996
"... Many different approaches have been applied to constraint satisfaction. These range from complete backtracking algorithms to sophisticated distributed configurations. However, most research effort in the field of constraint satisfaction algorithms has concentrated on the use of a single algorithm fo ..."
Abstract

Cited by 950 (43 self)
 Add to MetaCart
Many different approaches have been applied to constraint satisfaction. These range from complete backtracking algorithms to sophisticated distributed configurations. However, most research effort in the field of constraint satisfaction algorithms has concentrated on the use of a single algorithm for solving all problems. At the same time, a consensus appears to have developed to the effect that it is unlikely that any single algorithm is always the best choice for all classes of problem. In this paper we argue that an adaptive approach should play an important part in constraint satisfaction. This approach relaxes the commitment to using a single algorithm once search commences. As a result, we claim that it is possible to undertake a more focused approach to problem solving, allowing for the correction of bad algorithm choices and for capitalising on opportunities for gain by dynamically changing to more suitable candidates.
GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES
, 2002
"... GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract

Cited by 637 (79 self)
 Add to MetaCart
GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. In this chapter, we first describe the basic components of GRASP. Successful implementation techniques and parameter tuning strategies are discussed and illustrated by numerical results obtained for different applications. Enhanced or alternative solution construction mechanisms and techniques to speed up the search are also described: Reactive GRASP, cost perturbations, bias functions, memory and learning, local search on partially constructed solutions, hashing, and filtering. We also discuss in detail implementation strategies of memorybased intensification and postoptimization techniques using pathrelinking. Hybridizations with other metaheuristics, parallelization strategies, and applications are also reviewed.
Stable models and an alternative logic programming paradigm
 In The Logic Programming Paradigm: a 25Year Perspective
, 1999
"... In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting ..."
Abstract

Cited by 308 (20 self)
 Add to MetaCart
In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting alternative to more traditional logic programming styles of Horn logic programming, stratified logic programming and logic programming with wellfounded semantics. The proposed approach is based on the interpretation of program clauses as constraints. In this setting programs do not describe a single intended model, but a family of stable models. These stable models encode solutions to the constraint satisfaction problem described by the program. Our approach imposes restrictions on the syntax of logic programs. In particular, function symbols are eliminated from the language. We argue that the resulting logic programming system is wellattuned to problems in the class NP, has a welldefined domain of applications, and an emerging methodology of programming. We point out that what makes the whole approach viable is recent progress in implementations of algorithms to compute stable models of propositional logic programs. 1
ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers
 Artificial Intelligence
, 2002
"... We propose a new translation from normal logic programs with constraints under the answer set semantics to propositional logic. Given a normal logic program, we show that by adding, for each loop in the program, a corresponding loop formula to the program’s completion, we obtain a onetoone corresp ..."
Abstract

Cited by 263 (7 self)
 Add to MetaCart
We propose a new translation from normal logic programs with constraints under the answer set semantics to propositional logic. Given a normal logic program, we show that by adding, for each loop in the program, a corresponding loop formula to the program’s completion, we obtain a onetoone correspondence between the answer sets of the program and the models of the resulting propositional theory. In the worst case, there may be an exponential number of loops in a logic program. To address this problem, we propose an approach that adds loop formulas a few at a time, selectively. Based on these results, we implement a system called ASSAT(X), depending on the SAT solver X used, for computing one answer set of a normal logic program with constraints. We test the system on a variety of benchmarks including the graph coloring, the blocks world planning, and Hamiltonian Circuit domains. Our experimental results show that in these domains, for the task of generating one answer set of a normal logic program, our system has a clear edge over the stateofart answer set programming systems Smodels and DLV. 1 1
Planning through Stochastic Local Search and Action Graphs in LPG
 Journal of Artificial Intelligence Research (JAIR
, 1996
"... We present some techniques for planning in domains specified with the recent standard language pddl2.1, supporting “durative actions ” and numerical quantities. These techniques are implemented in lpg, a domainindependent planner that took part in the 3rd International Planning Competition (IPC). ..."
Abstract

Cited by 168 (22 self)
 Add to MetaCart
(Show Context)
We present some techniques for planning in domains specified with the recent standard language pddl2.1, supporting “durative actions ” and numerical quantities. These techniques are implemented in lpg, a domainindependent planner that took part in the 3rd International Planning Competition (IPC). lpg is an incremental, any time system producing multicriteria quality plans. The core of the system is based on a stochastic local search method and on a graphbased representation called “Temporal Action Graphs ” (TAgraphs). This paper focuses on temporal planning, introducing TAgraphs and proposing some techniques to guide the search in lpg using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often lpg outperforms all other fullyautomated planners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced. 1.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 144 (3 self)
 Add to MetaCart
(Show Context)
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
SATzilla: Portfoliobased Algorithm Selection for SAT
"... It has been widely observed that there is no single “dominant ” SAT solver; instead, different solvers perform best on different instances. Rather than following the traditional approach of choosing the best solver for a given class of instances, we advocate making this decision online on a perinst ..."
Abstract

Cited by 139 (22 self)
 Add to MetaCart
(Show Context)
It has been widely observed that there is no single “dominant ” SAT solver; instead, different solvers perform best on different instances. Rather than following the traditional approach of choosing the best solver for a given class of instances, we advocate making this decision online on a perinstance basis. Building on previous work, we describe SATzilla, an automated approach for constructing perinstance algorithm portfolios for SAT that use socalled empirical hardness models to choose among their constituent solvers. This approach takes as input a distribution of problem instances and a set of component solvers, and constructs a portfolio optimizing a given objective function (such as mean runtime, percent of instances solved, or score in a competition). The excellent performance of our SATzilla portfolios has been independently verified in the 2007 SAT Competition, where our SATzilla07 solvers won three gold, one silver and one bronze medal. In this article, we go well beyond SATzilla07 by making the portfolio construction scalable and completely automated, and improving it by integrating local search solvers as candidate solvers, by predicting performance score instead of runtime, and by using hierarchical hardness models that take into account different types of SAT instances. We demonstrate the effectiveness of these new techniques in extensive experimental results on data sets including instances from the most recent SAT competition. 1.
Automating FirstOrder Relational Logic
, 2000
"... An analysis is described that can automatically find models of firstorder formulas with relational operators and scalar quantifiers. The formula is translated to a quantifierfree boolean formula that has a model exactly when the original formula has a model within a given scope (that is, involving ..."
Abstract

Cited by 139 (22 self)
 Add to MetaCart
An analysis is described that can automatically find models of firstorder formulas with relational operators and scalar quantifiers. The formula is translated to a quantifierfree boolean formula that has a model exactly when the original formula has a model within a given scope (that is, involving no more than some finite number of atoms). The paper presents a simple logic and gives a compositional translation scheme. It reports on the use of Alcoa, a tool based on the scheme, to analyze a variety of specifications expressed in Alloy, an object modelling notation based on the logic.
Finding Hard Instances of the Satisfiability Problem: A Survey
, 1997
"... . Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case ..."
Abstract

Cited by 129 (1 self)
 Add to MetaCart
. Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case complexity, the threshold phenomenon, known lower bounds for certain classes of algorithms, and the problem of generating hard instances with solutions.
Recent Advances in AI Planning
 AI MAGAZINE
, 1999
"... The past five years have seen dramatic advances in planning algorithms, with an emphasis on propositional methods such as Graphplan and compilers that convert planning problems into propositional CNF formulae for solution via systematic or stochastic SAT methods. Related work on the Deep Space O ..."
Abstract

Cited by 127 (0 self)
 Add to MetaCart
The past five years have seen dramatic advances in planning algorithms, with an emphasis on propositional methods such as Graphplan and compilers that convert planning problems into propositional CNF formulae for solution via systematic or stochastic SAT methods. Related work on the Deep Space One spacecraft control algorithms advances our understanding of interleaved planning and execution. In this survey,we explain the latest techniques and suggest areas for future research.