Results 1  10
of
218
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 758 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 619 (31 self)
 Add to MetaCart
A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with &quot;flat &quot; data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much of the relational structure present in our database. This paper builds on the recent work on probabilistic relational models (PRMs), and describes how to learn them from databases. PRMs allow the properties of an object to depend probabilistically both on other properties of that object and on properties of related objects. Although PRMs are significantly more expressive than standard models, such as Bayesian networks, we show how to extend wellknown statistical methods for learning Bayesian networks to learn these models. We describe both parameter estimation and structure learning — the automatic induction of the dependency structure in a model. Moreover, we show how the learning procedure can exploit standard database retrieval techniques for efficient learning from large datasets. We present experimental results on both real and synthetic relational databases. 1
Modelling gene expression data using dynamic bayesian networks
, 1999
"... Recently, there has been much interest in reverse engineering genetic networks from time series data. In this paper, we show that most of the proposed discrete time models — including the boolean network model [Kau93, SS96], the linear model of D’haeseleer et al. [DWFS99], and the nonlinear model of ..."
Abstract

Cited by 223 (1 self)
 Add to MetaCart
Recently, there has been much interest in reverse engineering genetic networks from time series data. In this paper, we show that most of the proposed discrete time models — including the boolean network model [Kau93, SS96], the linear model of D’haeseleer et al. [DWFS99], and the nonlinear model of Weaver et al. [WWS99] — are all special cases of a general class of models called Dynamic Bayesian Networks (DBNs). The advantages of DBNs include the ability to model stochasticity, to incorporate prior knowledge, and to handle hidden variables and missing data in a principled way. This paper provides a review of techniques for learning DBNs. Keywords: Genetic networks, boolean networks, Bayesian networks, neural networks, reverse engineering, machine learning. 1
Probabilistic FrameBased Systems
 In Proc. AAAI
, 1998
"... Two of the most important threads of work in knowledge representation today are framebased representation systems (FRS's) and Bayesian networks (BNs). FRS's provide an excellent representation for the organizational structure of large complex domains, but their applicability is limited be ..."
Abstract

Cited by 214 (18 self)
 Add to MetaCart
(Show Context)
Two of the most important threads of work in knowledge representation today are framebased representation systems (FRS's) and Bayesian networks (BNs). FRS's provide an excellent representation for the organizational structure of large complex domains, but their applicability is limited because of their inability to deal with uncertainty and noise. BNs provide an intuitive and coherent probabilistic representation of our uncertainty, but are very limited in their ability to handle complex structured domains. In this paper, we provide a language that cleanly integrates these approaches, preserving the advantages of both. Our approach allows us to provide natural and compact definitions of probability models for a class, in a way that is local to the class frame. These models can be instantiated for any set of interconnected instances, resulting in a coherent probability distribution over the instance properties. Our language also allows us to represent important types of uncertainty tha...
Sketchread: a multidomain sketch recognition engine
 In UIST ’04 ACM symposium on User interface software and technology (2004
, 2004
"... We present SketchREAD, a multidomain sketch recognition engine capable of recognizing freely handdrawn diagrammatic sketches. Current computer sketch recognition systems are difficult to construct, and either are fragile or accomplish robustness by severely limiting the designer’s drawing freedom. ..."
Abstract

Cited by 100 (11 self)
 Add to MetaCart
(Show Context)
We present SketchREAD, a multidomain sketch recognition engine capable of recognizing freely handdrawn diagrammatic sketches. Current computer sketch recognition systems are difficult to construct, and either are fragile or accomplish robustness by severely limiting the designer’s drawing freedom. Our system can be applied to a variety of domains by providing structural descriptions of the shapes in that domain; no training data or programming is necessary. Robustness to the ambiguity and uncertainty inherent in complex, freelydrawn sketches is achieved through the use of context. The system uses context to guide the search for possible interpretations and uses a novel form of dynamically constructed Bayesian networks to evaluate these interpretations. This process allows the system to recover from lowlevel recognition errors (e.g., a line misclassified as an arc) that would otherwise result in domain level recognition errors. We evaluated SketchREAD on real sketches in two domains— family trees and circuit diagrams—and found that in both domains the use of context to reclassify lowlevel shapes significantly reduced recognition error over a baseline system that did not reinterpret lowlevel classifications. We also discuss the system’s potential role in sketchbased user interfaces.
Multiply sectioned bayesian networks and junction forests for large knowledge based systems
 Computational Intelligence
, 1993
"... Abstract — We extend lazy propagation for inference in singleagent Bayesian networks to multiagent lazy inference in multiply sectioned Bayesian networks (MSBNs). Two methods are proposed using distinct runtime structures. We prove that the new methods are exact and efficient when domain structure ..."
Abstract

Cited by 84 (28 self)
 Add to MetaCart
(Show Context)
Abstract — We extend lazy propagation for inference in singleagent Bayesian networks to multiagent lazy inference in multiply sectioned Bayesian networks (MSBNs). Two methods are proposed using distinct runtime structures. We prove that the new methods are exact and efficient when domain structure is sparse. Both improve space and time complexity than the existing method, which allow multiagent probabilistic reasoning to be performed in much larger domains given the computational resource. Relative performance of the three methods are compared analytically and experimentally. I.
Hybrid Bayesian Networks for Reasoning about Complex Systems
, 2002
"... Many realworld systems are naturally modeled as hybrid stochastic processes, i.e., stochastic processes that contain both discrete and continuous variables. Examples include speech recognition, target tracking, and monitoring of physical systems. The task is usually to perform probabilistic inferen ..."
Abstract

Cited by 71 (0 self)
 Add to MetaCart
Many realworld systems are naturally modeled as hybrid stochastic processes, i.e., stochastic processes that contain both discrete and continuous variables. Examples include speech recognition, target tracking, and monitoring of physical systems. The task is usually to perform probabilistic inference, i.e., infer the hidden state of the system given some noisy observations. For example, we can ask what is the probability that a certain word was pronounced given the readings of our microphone, what is the probability that a submarine is trying to surface given our sonar data, and what is the probability of a valve being open given our pressure and flow readings. Bayesian networks are
Probabilistic models for relational data
, 2004
"... We introduce a graphical language for relational data called the probabilistic entityrelationship (PER) model. The model is an extension of the entityrelationship model, a common model for the abstract representation of database structure. We concentrate on the directed version of this model—the di ..."
Abstract

Cited by 63 (0 self)
 Add to MetaCart
We introduce a graphical language for relational data called the probabilistic entityrelationship (PER) model. The model is an extension of the entityrelationship model, a common model for the abstract representation of database structure. We concentrate on the directed version of this model—the directed acyclic probabilistic entityrelationship (DAPER) model. The DAPER model is closely related to the plate model and the probabilistic relational model (PRM), existing models for relational data. The DAPER model is more expressive than either existing model, and also helps to demonstrate their similarity. In addition to describing the new language, we discuss important facets of modeling relational data, including the use of restricted relationships, self relationships, and probabilistic relationships. Many examples are provided.
Learning Module Networks
, 2003
"... Methods for learning Bayesian networks can discover dependency structure between observed variables. Although these methods are useful in many applications, they run into computational and statistical problems in domains that involve a large number of variables. In this paper, we ..."
Abstract

Cited by 58 (4 self)
 Add to MetaCart
(Show Context)
Methods for learning Bayesian networks can discover dependency structure between observed variables. Although these methods are useful in many applications, they run into computational and statistical problems in domains that involve a large number of variables. In this paper, we