Results 1  10
of
180
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 572 (11 self)
 Add to MetaCart
(Show Context)
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theory, cosmology, particle physics, astrophysics and condensed matter physics. No details are given, but references are provided to guide the interested reader to the literature. The present state of knowledge is summarized in a list of 35 key results on topics including the hamiltonian and path integral quantizations, coupling to matter, extensions to supergravity and higher dimensional theories, as well as applications to black holes, cosmology and Plank scale phenomenology. We describe the near term prospects for observational tests of quantum theories of gravity and the expectations that loop quantum gravity may provide predictions for their outcomes. Finally, we provide answers to frequently asked questions and a list of key open problems.
Background independent quantum gravity: a status report
, 2004
"... The goal of this article is to present an introduction to loop quantum gravity —a background independent, nonperturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to pr ..."
Abstract

Cited by 259 (7 self)
 Add to MetaCart
The goal of this article is to present an introduction to loop quantum gravity —a background independent, nonperturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird’s eye view of the present status of the subject, the article should also serve as a vehicle to enter the field and explore it in detail. To aid nonexperts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the article is essentially selfcontained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the article to a reasonable size, and to avoid overwhelming nonexperts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.
Spin Foam Models for Quantum Gravity
, 2008
"... In this article we review the present status of the spin foam formulation of nonperturbative (background independent) quantum gravity. The article is divided in two parts. In the first part we present a general introduction to the main ideas emphasizing their motivations from various perspectives. R ..."
Abstract

Cited by 123 (7 self)
 Add to MetaCart
In this article we review the present status of the spin foam formulation of nonperturbative (background independent) quantum gravity. The article is divided in two parts. In the first part we present a general introduction to the main ideas emphasizing their motivations from various perspectives. Riemannian 3dimensional gravity is used as a simple example to illustrate conceptual issues and the main goals of the approach. The main features of the various existing models for 4dimensional gravity are also presented here. We conclude with a discussion of important questions to be addressed in four dimensions (gauge invariance, discretization independence, etc.). In the second part we concentrate on the definition of the BarrettCrane model. We present the main results obtained in this framework from a critical perspective. Finally we review the combinatorial formulation of spin foam models based on the dual group field theory technology. We present the BarrettCrane model in this framework and review the finiteness results obtained for both its Riemannian as well
A Lorentzian signature model for quantum general relativity
, 1999
"... We give a relativistic spin network model for quantum gravity based on the Lorentz group and its qdeformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum mod ..."
Abstract

Cited by 105 (8 self)
 Add to MetaCart
We give a relativistic spin network model for quantum gravity based on the Lorentz group and its qdeformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum models for the case of the fourdimensional rotation group previously studied in [1], grqc/9709028. As a technical tool, formulae for the evaluation of relativistic spin networks for the Lorentz group are developed, with some simple examples which show that the evaluation is finite in interesting cases. We conjecture that the ‘10J’ symbol needed in our model has a finite value.
Spin foam models
 Classical and Quantum Gravity
, 1998
"... While the use of spin networks has greatly improved our understanding of the kinematical aspects of quantum gravity, the dynamical aspects remain obscure. To address this problem, we define the concept of a ‘spin foam ’ going from one spin network to another. Just as a spin network is a graph with e ..."
Abstract

Cited by 87 (2 self)
 Add to MetaCart
(Show Context)
While the use of spin networks has greatly improved our understanding of the kinematical aspects of quantum gravity, the dynamical aspects remain obscure. To address this problem, we define the concept of a ‘spin foam ’ going from one spin network to another. Just as a spin network is a graph with edges labeled by representations and vertices labeled by intertwining operators, a spin foam is a 2dimensional complex with faces labeled by representations and edges labeled by intertwining operators. Spin foams arise naturally as higherdimensional analogs of Feynman diagrams in quantum gravity and other gauge theories in the continuum, as well as in lattice gauge theory. When formulated as a ‘spin foam model’, such a theory consists of a rule for computing amplitudes from spin foam vertices, faces, and edges. The product of these amplitudes gives the amplitude for the spin foam, and the transition amplitude between spin networks is given as a sum over spin foams. After reviewing how spin networks describe ‘quantum 3geometries’, we describe how spin foams describe ‘quantum 4geometries’. We conclude by presenting a spin foam model of 4dimensional Euclidean quantum gravity, closely related to the state sum model of Barrett and Crane, but not assuming the presence of an underlying spacetime manifold.
Quantum gravity with a positive cosmological constant
, 2002
"... A quantum theory of gravity is described in the case of a positive cosmological constant in 3 + 1 dimensions. Both old and new results are described, which support the case that loop quantum gravity provides a satisfactory quantum theory of gravity. These include the existence of a ground state, dis ..."
Abstract

Cited by 57 (10 self)
 Add to MetaCart
A quantum theory of gravity is described in the case of a positive cosmological constant in 3 + 1 dimensions. Both old and new results are described, which support the case that loop quantum gravity provides a satisfactory quantum theory of gravity. These include the existence of a ground state, discoverd by Kodama, which both is an exact solution to the constraints of quantum gravity and has a semiclassical limit which is deSitter spacetime. The long wavelength excitations of this state are studied and are shown to reproduce both gravitons and, when matter is included, quantum field theory on deSitter spacetime. Furthermore, one may derive directly from the WheelerdeWitt equation corrections to the energymomentum relations for matter fields of the form E 2 = p 2 +m 2 +αlPlE 3 +... where α is a computable dimensionless constant. This may lead in the next few years to experimental tests of the theory. To study the excitations of the Kodama state exactly requires the use of the spin network representation, which is quantum deformed due to the cosmological constant. The theory may be developed within a single horizon, and the boundary states described exactly in terms of a boundary ChernSimons theory. The Bekenstein bound is recovered and the N bound of Banks is given a background independent explanation. The paper is written as an introduction to loop quantum gravity, requiring no prior knowledge of the subject. The deep relationship between quantum gravity and topological field theory is stressed throughout.
Quantum geometry with intrinsic local causality
, 1997
"... The space of states and operators for a large class of background independent theories of quantum spacetime dynamics is defined. The SU(2) spin networks of quantum general relativity are replaced by labelled compact twodimensional surfaces. The space of states of the theory is the direct sum of the ..."
Abstract

Cited by 45 (17 self)
 Add to MetaCart
(Show Context)
The space of states and operators for a large class of background independent theories of quantum spacetime dynamics is defined. The SU(2) spin networks of quantum general relativity are replaced by labelled compact twodimensional surfaces. The space of states of the theory is the direct sum of the spaces of invariant tensors of a quantum group Gq over all compact (finite genus) oriented 2surfaces. The dynamics is background independent and locally causal. The dynamics constructs histories with discrete features of spacetime geometry such as causal structure and multifingered time. For SU(2) the theory satisfies the Bekenstein bound and the holographic hypothesis is recast in this formalism.
A lattice worldsheet sum for 4d Euclidean general relativity, Preprint arXiv:grqc/9711052
"... A lattice model for four dimensional Euclidean quantum general relativity is proposed for a simplicial spacetime. It is shown how this model can be expressed in terms of a sum over worldsheets of spin networks in the lattice, and an interpretation of these worldsheets as spacetime geometries is give ..."
Abstract

Cited by 44 (3 self)
 Add to MetaCart
A lattice model for four dimensional Euclidean quantum general relativity is proposed for a simplicial spacetime. It is shown how this model can be expressed in terms of a sum over worldsheets of spin networks in the lattice, and an interpretation of these worldsheets as spacetime geometries is given, based on the geometry defined by spin networks in canonical loop quantized GR. The spacetime geometry has a Planck scale discreteness which arises ”naturally ” from the discrete spectrum of spins of SU(2) representations (and not from the use of a spacetime lattice). The lattice model of the dynamics is a formal quantization of the classical lattice model of [Rei97a], which reproduces, in a continuum limit, Euclidean general relativity. 1
Classical Euclidean general relativity from “lefthanded area = righthanded area”. Classical and Quantum Gravity 16
, 1999
"... A classical continuum theory corresponding to Barrett and Crane’s model of Euclidean quantum gravity is presented. The fields in this classical theory are those of SO(4) BF theory, a simple topological, and an so(4) connection. The left handed (selfdual) and right handed (antiselfdual) components ..."
Abstract

Cited by 35 (1 self)
 Add to MetaCart
(Show Context)
A classical continuum theory corresponding to Barrett and Crane’s model of Euclidean quantum gravity is presented. The fields in this classical theory are those of SO(4) BF theory, a simple topological, and an so(4) connection. The left handed (selfdual) and right handed (antiselfdual) components of B define a left handed and a, generally distinct, right handed area for each spacetime 2surface. The theory being presented is obtained by adding to the BF action a Lagrange multiplier term that enforces the constraint that the left handed and the right handed areas be equal. It is shown that Euclidean general relativity (GR) forms a sector of the resulting theory. The remaining three sectors of the theory are also characterized and it is shown that, except in special cases, GR canonical initial data is sufficient to specify the GR sector as well as a specific solution within this sector. Finally, the path integral quantization of the theory is discussed at a formal level and a hueristic argument is given suggesting that in the semiclassical limit the path integral is dominated by solutions in one of the nonGR sectors, which would mean that the theory quantized in this way is not a quantization of GR. theory of an so(4) valued 2form field, B IJ µν