Results 1  10
of
264
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 3218 (68 self)
 Add to MetaCart
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approach is that local properties are often not preserved at the global level. We present a general framework for using additional interface processes to model the environment for a component. These interface processes are typically much simpler than the full environment of the component. By composing a component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
Algebraic laws for nondeterminism and concurrency
 Journal of the ACM
, 1985
"... Abstract. Since a nondeterministic and concurrent program may, in general, communicate repeatedly with its environment, its meaning cannot be presented naturally as an input/output function (as is often done in the denotational approach to semantics). In this paper, an alternative is put forth. Firs ..."
Abstract

Cited by 600 (13 self)
 Add to MetaCart
(Show Context)
Abstract. Since a nondeterministic and concurrent program may, in general, communicate repeatedly with its environment, its meaning cannot be presented naturally as an input/output function (as is often done in the denotational approach to semantics). In this paper, an alternative is put forth. First, a definition is given of what it is for two programs or program parts to be equivalent for all observers; then two program parts are said to be observation congruent iff they are, in all program contexts, equivalent. The behavior of a program part, that is, its meaning, is defined to be its observation congruence class. The paper demonstrates, for a sequence of simple languages expressing finite (terminating) behaviors, that in each case observation congruence can be axiomatized algebraically. Moreover, with the addition of recursion and another simple extension, the algebraic language described here becomes a calculus for writing and specifying concurrent programs and for proving their properties.
Reasoning about Infinite Computations
 Information and Computation
, 1994
"... We investigate extensions of temporal logic by connectives defined by finite automata on infinite words. We consider three different logics, corresponding to three different types of acceptance conditions (finite, looping and repeating) for the automata. It turns out, however, that these logics all ..."
Abstract

Cited by 316 (59 self)
 Add to MetaCart
We investigate extensions of temporal logic by connectives defined by finite automata on infinite words. We consider three different logics, corresponding to three different types of acceptance conditions (finite, looping and repeating) for the automata. It turns out, however, that these logics all have the same expressive power and that their decision problems are all PSPACEcomplete. We also investigate connectives defined by alternating automata and show that they do not increase the expressive power of the logic or the complexity of the decision problem. 1 Introduction For many years, logics of programs have been tools for reasoning about the input/output behavior of programs. When dealing with concurrent or nonterminating processes (like operating systems) there is, however, a need to reason about infinite computations. Thus, instead of considering the first and last states of finite computations, we need to consider the infinite sequences of states that the program goes through...
Logic and databases: a deductive approach
 ACM Computing Surveys
, 1984
"... The purpose of this paper is to show that logic provides a convenient formalism for studying classical database problems. There are two main parts to the paper, devoted respectively to conventional databases and deductive databases. In the first part, we focus on query languages, integrity modeling ..."
Abstract

Cited by 168 (2 self)
 Add to MetaCart
The purpose of this paper is to show that logic provides a convenient formalism for studying classical database problems. There are two main parts to the paper, devoted respectively to conventional databases and deductive databases. In the first part, we focus on query languages, integrity modeling and maintenance, query optimization, and data
A Propositional Modal Logic of Time Intervals
 Journal of the ACM
, 1996
"... : In certain areas of artificial intelligence there is need to represent continuous change and to make statements that are interpreted with respect to time intervals rather than time points. To this end we develop a modal temporal logic based on time intervals, a logic which can be viewed as a gener ..."
Abstract

Cited by 162 (2 self)
 Add to MetaCart
(Show Context)
: In certain areas of artificial intelligence there is need to represent continuous change and to make statements that are interpreted with respect to time intervals rather than time points. To this end we develop a modal temporal logic based on time intervals, a logic which can be viewed as a generalization of pointbased modal temporal logic. We discuss related logics, give an intuitive presentation of the new logic, and define its formal syntax and semantics. We make no assumption about the underlying nature of time, allowing it to be discrete (such as the natural numbers) or continuous (such as the rationals or the reals), linear or branching, complete (such as the reals) or not (such as the rationals). We show, however, that there are formulas in the logic that allow us to distinguish all these situations. We also give a translation of our logic into firstorder logic, which allows us to apply some results on firstorder logic to our modal one. Finally, we consider the difficulty o...
Logics for Hybrid Systems
 Proceedings of the IEEE
, 2000
"... This paper offers a synthetic overview of, and original contributions to, the use of logics and formal methods in the analysis of hybrid systems ..."
Abstract

Cited by 138 (13 self)
 Add to MetaCart
(Show Context)
This paper offers a synthetic overview of, and original contributions to, the use of logics and formal methods in the analysis of hybrid systems
Why is modal logic so robustly decidable?
 OF DIMACS SERIES IN DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, AMERICAN MATHEMATICAL SOCIETY
, 1996
"... ..."
Reasoning about Information Change
, 1997
"... In this paper, we have combined techniques from epistemic and dynamic logic to arrive at a logic for describing multiagent information change. The key concept of dynamic semantics is that the meaning of an assertion is the way in which the assertion changes the information of the hearer. Thus a dyn ..."
Abstract

Cited by 128 (4 self)
 Add to MetaCart
In this paper, we have combined techniques from epistemic and dynamic logic to arrive at a logic for describing multiagent information change. The key concept of dynamic semantics is that the meaning of an assertion is the way in which the assertion changes the information of the hearer. Thus a dynamic epistemic semantics consist in a explicit formal definition of the information change potential of a sentence. We used these ideas to arrive at the system of Dynamic Epistemic Semantics, which is semantics for a language describing information change in a multiagent setting. This semantics proved useful for analyzing the Muddy Children paradox, and also for giving a semantics for knowledge programs, since it enabled us to model knowledge change by giving an explicit semantics to the triggers of the information change (the latter being the assertions made, or the messages sent). We feel that this is an important extension, since standard approaches to for example the Muddy Children (e.g. Fagin et al. 1995) generally use static epistemic logics like S5 to describe the situation before and after a certain epistemic event, leaving the transition between `before' and `after' to considerations in the metalanguage.
Intuitionistic Reasoning about Shared Mutable Data Structure
 Millennial Perspectives in Computer Science
, 2000
"... Drawing upon early work by Burstall, we extend Hoare's approach to proving the correctness of imperative programs, to deal with programs that perform destructive updates to data structures containing more than one pointer to the same location. The key concept is an "independent conjunc ..."
Abstract

Cited by 112 (5 self)
 Add to MetaCart
(Show Context)
Drawing upon early work by Burstall, we extend Hoare's approach to proving the correctness of imperative programs, to deal with programs that perform destructive updates to data structures containing more than one pointer to the same location. The key concept is an "independent conjunction" P & Q that holds only when P and Q are both true and depend upon distinct areas of storage. To make this concept precise we use an intuitionistic logic of assertions, with a Kripke semantics whose possible worlds are heaps (mapping locations into tuples of values).