Results 1  10
of
85
Calibration and Empirical Bayes Variable Selection
 Biometrika
, 1997
"... this paper, is that with F =2logp. This choice was proposed by Foster &G eorge (1994) where it was called the Risk Inflation Criterion (RIC) because it asymptotically minimises the maximum predictive risk inflation due to selection when X is orthogonal. This choice and its minimax property were ..."
Abstract

Cited by 190 (20 self)
 Add to MetaCart
this paper, is that with F =2logp. This choice was proposed by Foster &G eorge (1994) where it was called the Risk Inflation Criterion (RIC) because it asymptotically minimises the maximum predictive risk inflation due to selection when X is orthogonal. This choice and its minimax property were also discovered independently by Donoho & Johnstone (1994) in the wavelet regression context, where they refer to it as the universal hard thresholding rule
The practical implementation of Bayesian model selection
 Institute of Mathematical Statistics
, 2001
"... In principle, the Bayesian approach to model selection is straightforward. Prior probability distributions are used to describe the uncertainty surrounding all unknowns. After observing the data, the posterior distribution provides a coherent post data summary of the remaining uncertainty which is r ..."
Abstract

Cited by 128 (3 self)
 Add to MetaCart
In principle, the Bayesian approach to model selection is straightforward. Prior probability distributions are used to describe the uncertainty surrounding all unknowns. After observing the data, the posterior distribution provides a coherent post data summary of the remaining uncertainty which is relevant for model selection. However, the practical implementation of this approach often requires carefully tailored priors and novel posterior calculation methods. In this article, we illustrate some of the fundamental practical issues that arise for two different model selection problems: the variable selection problem for the linear model and the CART model selection problem.
EMPIRICAL BAYES SELECTION OF WAVELET THRESHOLDS
, 2005
"... This paper explores a class of empirical Bayes methods for leveldependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavytailed density. The mixing weight, or sparsity parameter, for each level of ..."
Abstract

Cited by 116 (3 self)
 Add to MetaCart
This paper explores a class of empirical Bayes methods for leveldependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavytailed density. The mixing weight, or sparsity parameter, for each level of the transform is chosen by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold. Details of the calculations needed for implementing the procedure are included. In practice, the estimates are quick to compute and there is software available. Simulations on the standard model functions show excellent performance, and applications to data drawn from various fields of application are used to explore the practical performance of the approach. By using a general result on the risk of the corresponding marginal maximum likelihood approach for a single sequence, overall bounds on
Wavelet estimators in nonparametric regression: a comparative simulation study
 Journal of Statistical Software
, 2001
"... OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. ..."
Abstract

Cited by 113 (18 self)
 Add to MetaCart
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.
Optimal Predictive Model Selection
 Ann. Statist
, 2002
"... Often the goal of model selection is to choose a model for future prediction, and it is natural to measure the accuracy of a future prediction by squared error loss. ..."
Abstract

Cited by 92 (3 self)
 Add to MetaCart
(Show Context)
Often the goal of model selection is to choose a model for future prediction, and it is natural to measure the accuracy of a future prediction by squared error loss.
Waveletbased functional mixed models
 Journal of the Royal Statistical Society, Series B
, 2006
"... Summary. Increasingly, scientific studies yield functional data, in which the ideal units of observation are curves and the observed data consist of sets of curves that are sampled on a fine grid. We present new methodology that generalizes the linear mixed model to the functional mixed model framew ..."
Abstract

Cited by 84 (16 self)
 Add to MetaCart
Summary. Increasingly, scientific studies yield functional data, in which the ideal units of observation are curves and the observed data consist of sets of curves that are sampled on a fine grid. We present new methodology that generalizes the linear mixed model to the functional mixed model framework, with model fitting done by using a Bayesian waveletbased approach. This method is flexible, allowing functions of arbitrary form and the full range of fixed effects structures and betweencurve covariance structures that are available in the mixed model framework. It yields nonparametric estimates of the fixed and randomeffects functions as well as the various betweencurve and withincurve covariance matrices.The functional fixed effects are adaptively regularized as a result of the nonlinear shrinkage prior that is imposed on the fixed effects’ wavelet coefficients, and the randomeffect functions experience a form of adaptive regularization because of the separately estimated variance components for each wavelet coefficient. Because we have posterior samples for all model quantities, we can perform pointwise or joint Bayesian inference or prediction on the quantities of the model.The adaptiveness of the method makes it especially appropriate for modelling irregular functional data that are characterized by numerous local features like peaks.
Mixtures of gpriors for Bayesian variable selection
 Journal of the American Statistical Association
, 2008
"... Zellner’s gprior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues. In this paper, we study mixtures of gpriors as an alternative to default gpriors that resolve many of the problems with the original formulation, while mai ..."
Abstract

Cited by 82 (7 self)
 Add to MetaCart
(Show Context)
Zellner’s gprior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues. In this paper, we study mixtures of gpriors as an alternative to default gpriors that resolve many of the problems with the original formulation, while maintaining the computational tractability that has made the gprior so popular. We present theoretical properties of the mixture gpriors and provide real and simulated examples to compare the mixture formulation with fixed gpriors, Empirical Bayes approaches and other default procedures.
Mixtures of g priors for Bayesian Variable Selection,” ISDS working paper
, 2005
"... Zellner’s g prior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues. In this article we study mixtures of g priors as an alternative to default g priors that resolve many of the problems with the original formulation while mai ..."
Abstract

Cited by 79 (4 self)
 Add to MetaCart
(Show Context)
Zellner’s g prior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues. In this article we study mixtures of g priors as an alternative to default g priors that resolve many of the problems with the original formulation while maintaining the computational tractability that has made the g prior so popular. We present theoretical properties of the mixture g priors and provide real and simulated examples to compare the mixture formulation with fixed g priors, empirical Bayes approaches, and other default procedures.
The variable selection problem
 Journal of the American Statistical Association
, 2000
"... The problem of variable selection is one of the most pervasive model selection problems in statistical applications. Often referred to as the problem of subset selection, it arises when one wants to model the relationship between a variable of interest and a subset of potential explanatory variables ..."
Abstract

Cited by 62 (3 self)
 Add to MetaCart
The problem of variable selection is one of the most pervasive model selection problems in statistical applications. Often referred to as the problem of subset selection, it arises when one wants to model the relationship between a variable of interest and a subset of potential explanatory variables or predictors, but there is uncertainty about which subset to use. This vignette reviews some of the key developments which have led to the wide variety of approaches for this problem. 1