Results 1  10
of
117
Online Learning with Kernels
, 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little u ..."
Abstract

Cited by 2831 (123 self)
 Add to MetaCart
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little use of these methods in an online setting suitable for realtime applications. In this paper we consider online learning in a Reproducing Kernel Hilbert Space. By considering classical stochastic gradient descent within a feature space, and the use of some straightforward tricks, we develop simple and computationally efficient algorithms for a wide range of problems such as classification, regression, and novelty detection. In addition to allowing the exploitation of the kernel trick in an online setting, we examine the value of large margins for classification in the online setting with a drifting target. We derive worst case loss bounds and moreover we show the convergence of the hypothesis to the minimiser of the regularised risk functional. We present some experimental results that support the theory as well as illustrating the power of the new algorithms for online novelty detection. In addition
Correcting sample selection bias by unlabeled data
"... We consider the scenario where training and test data are drawn from different distributions, commonly referred to as sample selection bias. Most algorithms for this setting try to first recover sampling distributions and then make appropriate corrections based on the distribution estimate. We prese ..."
Abstract

Cited by 207 (11 self)
 Add to MetaCart
(Show Context)
We consider the scenario where training and test data are drawn from different distributions, commonly referred to as sample selection bias. Most algorithms for this setting try to first recover sampling distributions and then make appropriate corrections based on the distribution estimate. We present a nonparametric method which directly produces resampling weights without distribution estimation. Our method works by matching distributions between training and testing sets in feature space. Experimental results demonstrate that our method works well in practice.
A Hilbert space embedding for distributions
 In Algorithmic Learning Theory: 18th International Conference
, 2007
"... Abstract. We describe a technique for comparing distributions without the need for density estimation as an intermediate step. Our approach relies on mapping the distributions into a reproducing kernel Hilbert space. Applications of this technique can be found in twosample tests, which are used for ..."
Abstract

Cited by 113 (44 self)
 Add to MetaCart
(Show Context)
Abstract. We describe a technique for comparing distributions without the need for density estimation as an intermediate step. Our approach relies on mapping the distributions into a reproducing kernel Hilbert space. Applications of this technique can be found in twosample tests, which are used for determining whether two sets of observations arise from the same distribution, covariate shift correction, local learning, measures of independence, and density estimation. Kernel methods are widely used in supervised learning [1, 2, 3, 4], however they are much less established in the areas of testing, estimation, and analysis of probability distributions, where information theoretic approaches [5, 6] have long been dominant. Recent examples include [7] in the context of construction of graphical models, [8] in the context of feature extraction, and [9] in the context of independent component analysis. These methods have by and large a common issue: to compute quantities such as the mutual information, entropy, or KullbackLeibler divergence, we require sophisticated space partitioning and/or
Graph Kernels
, 2007
"... We present a unified framework to study graph kernels, special cases of which include the random walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004; Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time complexit ..."
Abstract

Cited by 101 (9 self)
 Add to MetaCart
We present a unified framework to study graph kernels, special cases of which include the random walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004; Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time complexity of kernel computation between unlabeled graphs with n vertices from O(n 6) to O(n 3). We find a spectral decomposition approach even more efficient when computing entire kernel matrices. For labeled graphs we develop conjugate gradient and fixedpoint methods that take O(dn 3) time per iteration, where d is the size of the label set. By extending the necessary linear algebra to Reproducing Kernel Hilbert Spaces (RKHS) we obtain the same result for ddimensional edge kernels, and O(n 4) in the infinitedimensional case; on sparse graphs these algorithms only take O(n 2) time per iteration in all cases. Experiments on graphs from bioinformatics and other application domains show that these techniques can speed up computation of the kernel by an order of magnitude or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to Rconvolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment kernel of Fröhlich et al. (2006) yet provably positive semidefinite.
A kernel statistical test of independence
, 2008
"... Although kernel measures of independence have been widely applied in machine learning (notably in kernel ICA), there is as yet no method to determine whether they have detected statistically significant dependence. We provide a novel test of the independence hypothesis for one particular kernel inde ..."
Abstract

Cited by 98 (50 self)
 Add to MetaCart
(Show Context)
Although kernel measures of independence have been widely applied in machine learning (notably in kernel ICA), there is as yet no method to determine whether they have detected statistically significant dependence. We provide a novel test of the independence hypothesis for one particular kernel independence measure, the HilbertSchmidt independence criterion (HSIC). The resulting test costs O(m 2), where m is the sample size. We demonstrate that this test outperforms established contingency table and functional correlationbased tests, and that this advantage is greater for multivariate data. Finally, we show the HSIC test also applies to text (and to structured data more generally), for which no other independence test presently exists. 1
Kernel measures of conditional dependence
 In Adv. NIPS
, 2008
"... We propose a new measure of conditional dependence of random variables, based on normalized crosscovariance operators on reproducing kernel Hilbert spaces. Unlike previous kernel dependence measures, the proposed criterion does not depend on the choice of kernel in the limit of infinite data, for a ..."
Abstract

Cited by 87 (46 self)
 Add to MetaCart
(Show Context)
We propose a new measure of conditional dependence of random variables, based on normalized crosscovariance operators on reproducing kernel Hilbert spaces. Unlike previous kernel dependence measures, the proposed criterion does not depend on the choice of kernel in the limit of infinite data, for a wide class of kernels. At the same time, it has a straightforward empirical estimate with good convergence behaviour. We discuss the theoretical properties of the measure, and demonstrate its application in experiments. 1
A kernel method for the two sample problem
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 19
, 2007
"... We propose a framework for analyzing and comparing distributions, allowing us to design statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert ..."
Abstract

Cited by 70 (18 self)
 Add to MetaCart
We propose a framework for analyzing and comparing distributions, allowing us to design statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS). We present two tests based on large deviation bounds for the test statistic, while a third is based on the asymptotic distribution of this statistic. The test statistic can be computed in quadratic time, although efficient linear time approximations are available. Several classical metrics on distributions are recovered when the function space used to compute the difference in expectations is allowed to be more general (eg. a Banach space). We apply our twosample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.
Hilbert Space Embeddings of Conditional Distributions with Applications to Dynamical Systems
, 2009
"... In this paper, we extend the Hilbert space embedding approach to handle conditional distributions. We derive a kernel estimate for the conditional embedding, and show its connection to ordinary embeddings. Conditional embeddings largely extend our ability to manipulate distributions in Hibert spaces ..."
Abstract

Cited by 50 (19 self)
 Add to MetaCart
(Show Context)
In this paper, we extend the Hilbert space embedding approach to handle conditional distributions. We derive a kernel estimate for the conditional embedding, and show its connection to ordinary embeddings. Conditional embeddings largely extend our ability to manipulate distributions in Hibert spaces, and as an example, we derive a nonparametric method for modeling dynamical systems where the belief state of the system is maintained as a conditional embedding. Our method is very general in terms of both the domains and the types of distributions that it can handle, and we demonstrate the effectiveness of our method in various dynamical systems. We expect that conditional embeddings will have wider applications beyond modeling dynamical systems.
Information, Divergence and Risk for Binary Experiments
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2009
"... We unify fdivergences, Bregman divergences, surrogate regret bounds, proper scoring rules, cost curves, ROCcurves and statistical information. We do this by systematically studying integral and variational representations of these various objects and in so doing identify their primitives which all ..."
Abstract

Cited by 41 (8 self)
 Add to MetaCart
We unify fdivergences, Bregman divergences, surrogate regret bounds, proper scoring rules, cost curves, ROCcurves and statistical information. We do this by systematically studying integral and variational representations of these various objects and in so doing identify their primitives which all are related to costsensitive binary classification. As well as developing relationships between generative and discriminative views of learning, the new machinery leads to tight and more general surrogate regret bounds and generalised Pinsker inequalities relating fdivergences to variational divergence. The new viewpoint also illuminates existing algorithms: it provides a new derivation of Support Vector Machines in terms of divergences and relates Maximum Mean Discrepancy to Fisher Linear Discriminants.
An empirical analysis of domain adaptation algorithms for genomic sequence analysis
 in Conf. on Neural Inf. Proc. Sys. (NIPS
, 2008
"... We study the problem of domain transfer for a supervised classification task in mRNA splicing. We consider a number of recent domain transfer methods from machine learning, including some that are novel, and evaluate them on genomic sequence data from model organisms of varying evolutionary distance ..."
Abstract

Cited by 38 (7 self)
 Add to MetaCart
(Show Context)
We study the problem of domain transfer for a supervised classification task in mRNA splicing. We consider a number of recent domain transfer methods from machine learning, including some that are novel, and evaluate them on genomic sequence data from model organisms of varying evolutionary distance. We find that in cases where the organisms are not closely related, the use of domain adaptation methods can help improve classification performance. 1