Results 1  10
of
980
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1643 (75 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zeroknowledge proofs.
Short signatures from the Weil pairing
, 2001
"... Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signa ..."
Abstract

Cited by 743 (28 self)
 Add to MetaCart
(Show Context)
Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signatures are typed in by a human or signatures are sent over a lowbandwidth channel. 1
Keying hash functions for message authentication
, 1996
"... The use of cryptographic hash functions like MD5 or SHA for message authentication has become a standard approach inmanyInternet applications and protocols. Though very easy to implement, these mechanisms are usually based on ad hoc techniques that lack a sound security analysis. We present new cons ..."
Abstract

Cited by 617 (42 self)
 Add to MetaCart
The use of cryptographic hash functions like MD5 or SHA for message authentication has become a standard approach inmanyInternet applications and protocols. Though very easy to implement, these mechanisms are usually based on ad hoc techniques that lack a sound security analysis. We present new constructions of message authentication schemes based on a cryptographic hash function. Our schemes, NMAC and HMAC, are proven to be secure as long as the underlying hash function has some reasonable cryptographic strengths. Moreover we show, in a quantitativeway, that the schemes retain almost all the security of the underlying hash function. In addition our schemes are e cient and practical. Their performance is essentially that of the underlying hash function. Moreover they use the hash function (or its compression function) as a black box, so that widely available library code or hardware can be used to implement them in a simple way, and replaceability of the underlying hash function is easily supported.
Entity Authentication and Key Distribution
, 1993
"... Entity authentication and key distribution are central cryptographic problems in distributed computing  but up until now, they have lacked even a meaningful definition. One consequence is that incorrect and inefficient protocols have proliferated. This paper provides the first treatment of these p ..."
Abstract

Cited by 580 (13 self)
 Add to MetaCart
Entity authentication and key distribution are central cryptographic problems in distributed computing  but up until now, they have lacked even a meaningful definition. One consequence is that incorrect and inefficient protocols have proliferated. This paper provides the first treatment of these problems in the complexitytheoretic framework of modern cryptography. Addressed in detail are two problems of the symmetric, twoparty setting: mutual authentication and authenticated key exchange. For each we present a definition, protocol, and proof that the protocol meets its goal, assuming the (minimal) assumption of pseudorandom function. When this assumption is appropriately instantiated, the protocols given are practical and efficient.
The exact security of digital signatures: How to sign with RSA and Rabin
, 1996
"... We describe an RSAbased signing scheme called PSS which combines essentially optimal efficiency with attractive security properties. Signing takes one RSA decryption plus some hashing, verification takes one RSA encryption plus some hashing, and the size of the signature is the size of the modulus. ..."
Abstract

Cited by 393 (16 self)
 Add to MetaCart
We describe an RSAbased signing scheme called PSS which combines essentially optimal efficiency with attractive security properties. Signing takes one RSA decryption plus some hashing, verification takes one RSA encryption plus some hashing, and the size of the signature is the size of the modulus. Assuming the underlying hash functions are ideal, our schemes are not only provably secure, but are so in a tight way — an ability to forge signatures with a certain amount of computational resources implies the ability to invert RSA (on the same size modulus) with about the same computational effort. Furthermore, we provide a second scheme which maintains all of the above features and in addition provides message recovery. These ideas extend to provide schemes for Rabin signatures with analogous properties; in particular their security can be tightly related to the hardness of factoring.
Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption)
, 2000
"... Two distinct, rigorous views of cryptography have developed over the years, in two mostly separate communities. One of the views relies on a simple but effective formal approach; the other, on a detailed computational model that considers issues of complexity and probability. ..."
Abstract

Cited by 389 (18 self)
 Add to MetaCart
Two distinct, rigorous views of cryptography have developed over the years, in two mostly separate communities. One of the views relies on a simple but effective formal approach; the other, on a detailed computational model that considers issues of complexity and probability.
Short Signatures without Random Oracles
, 2004
"... We describe a short signature scheme which is existentially unforgeable under a chosen message attack without using random oracles. The security of our scheme depends on a new complexity assumption we call the Strong Di#eHellman assumption. This assumption has similar properties to the Strong RS ..."
Abstract

Cited by 387 (13 self)
 Add to MetaCart
We describe a short signature scheme which is existentially unforgeable under a chosen message attack without using random oracles. The security of our scheme depends on a new complexity assumption we call the Strong Di#eHellman assumption. This assumption has similar properties to the Strong RSA assumption, hence the name. Strong RSA was previously used to construct signature schemes without random oracles. However, signatures generated by our scheme are much shorter and simpler than signatures from schemes based on Strong RSA.
Mobile Values, New Names, and Secure Communication
, 2001
"... We study the interaction of the "new" construct with a rich but common form of (firstorder) communication. This interaction is crucial in security protocols, which are the main motivating examples for our work; it also appears in other programminglanguage contexts. Specifically, we intro ..."
Abstract

Cited by 378 (18 self)
 Add to MetaCart
We study the interaction of the "new" construct with a rich but common form of (firstorder) communication. This interaction is crucial in security protocols, which are the main motivating examples for our work; it also appears in other programminglanguage contexts. Specifically, we introduce a simple, general extension of the pi calculus with value passing, primitive functions, and equations among terms. We develop semantics and proof techniques for this extended language and apply them in reasoning about some security protocols.
Security Arguments for Digital Signatures and Blind Signatures
 JOURNAL OF CRYPTOLOGY
, 2000
"... Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the ..."
Abstract

Cited by 374 (41 self)
 Add to MetaCart
Since the appearance of publickey cryptography in the seminal DiffieHellman paper, many new schemes have been proposed and many have been broken. Thus, the