Results 1  10
of
370
Multidimensional Access Methods
, 1998
"... Search operations in databases require special support at the physical level. This is true for conventional databases as well as spatial databases, where typical search operations include the point query (find all objects that contain a given search point) and the region query (find all objects that ..."
Abstract

Cited by 684 (3 self)
 Add to MetaCart
Search operations in databases require special support at the physical level. This is true for conventional databases as well as spatial databases, where typical search operations include the point query (find all objects that contain a given search point) and the region query (find all objects that overlap a given search region).
Nearest Neighbor Queries
, 1995
"... A frequently encountered type of query in Geographic Information Systems is to find the k nearest neighbor objects to a given point in space. Processing such queries requires substantially different search algorithms than those for location or range queries. In this paper we present an efficient bra ..."
Abstract

Cited by 594 (1 self)
 Add to MetaCart
(Show Context)
A frequently encountered type of query in Geographic Information Systems is to find the k nearest neighbor objects to a given point in space. Processing such queries requires substantially different search algorithms than those for location or range queries. In this paper we present an efficient branchandbound Rtree traversal algorithm to find the nearest neighbor object to a point, and then generalize it to finding the k nearest neighbors. We also discuss metrics for an optimistic and a pessimistic search ordering strategy as well as for pruning. Finally, we present the results of several experiments obtained using the implementation of our algorithm and examine the behavior of the metrics and the scalability of the algorithm.
FastMap: A Fast Algorithm for Indexing, DataMining and Visualization of Traditional and Multimedia Datasets
, 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in kd space, using k featureextraction functions, provided by a domain expert [25]. Thus, we can subsequently use highly finetuned spatial access methods (SAMs), to answer several types ..."
Abstract

Cited by 497 (23 self)
 Add to MetaCart
A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in kd space, using k featureextraction functions, provided by a domain expert [25]. Thus, we can subsequently use highly finetuned spatial access methods (SAMs), to answer several types of queries, including the `Query By Example' type (which translates to a range query); the `all pairs' query (which translates to a spatial join [8]); the nearestneighbor or bestmatch query, etc. However, designing feature extraction functions can be hard. It is relatively easier for a domain expert to assess the similarity/distance of two objects. Given only the distance information though, it is not obvious how to map objects into points. This is exactly the topic of this paper. We describe a fast algorithm to map objects into points in some kdimensional space (k is userdefined), such that the dissimilarities are preserved. There are two benefits from this mapping: (a) efficient ret...
Fast Similarity Search in the Presence of Noise, Scaling, and Translation in TimeSeries Databases
 In VLDB
, 1995
"... We introduce a new model of similarity of time sequences that captures the intuitive notion that two sequences should be considered similar if they have enough nonoverlapping timeordered pairs of subsequences thar are similar. The model allows the amplitude of one of the two sequences to be scaled ..."
Abstract

Cited by 237 (6 self)
 Add to MetaCart
(Show Context)
We introduce a new model of similarity of time sequences that captures the intuitive notion that two sequences should be considered similar if they have enough nonoverlapping timeordered pairs of subsequences thar are similar. The model allows the amplitude of one of the two sequences to be scaled by any suitable amount and its offset adjusted appropriately. Two subsequences are considered similar if one can be enclosed within an envelope of a specified width drawn around the other. The model also allows nonmatching gaps in the matching subsequences. The matching subsequences need not be aligned along the time axis. Given this model of similarity,we present fast search techniques for discovering all similar sequences in a set of sequences. These techniques can also be used to find all (sub)sequences similar to a given sequence. We applied this matching system to the U.S. mutual funds data and discovered interesting matches.
The TVtree  an index structure for highdimensional data
 VLDB Journal
, 1994
"... We propose a file structure to index highdimensionality data, typically, points in some feature space. The idea is to use only a few of the features, utilizing additional features whenever the additional discriminatory power is absolutely necessary. We present in detail the design of our tree struc ..."
Abstract

Cited by 216 (8 self)
 Add to MetaCart
(Show Context)
We propose a file structure to index highdimensionality data, typically, points in some feature space. The idea is to use only a few of the features, utilizing additional features whenever the additional discriminatory power is absolutely necessary. We present in detail the design of our tree structure and the associated algorithms that handle such `varying length' feature vectors. Finally we report simulation results, comparing the proposed structure with the R tree, which is one of the most successful methods for lowdimensionality spaces. The results illustrate the superiority of our method, with up to 80% savings in disk accesses. Type of Contribution: New Index Structure, for highdimensionality feature spaces. Algorithms and performance measurements. Keywords: Spatial Index, Similarity Retrieval, Query by Content 1 Introduction Many applications require enhanced indexing, capable of performing similarity searching on several, nontraditional (`exotic') data types. The targ...
An Introduction to Spatial Database Systems
 THE VLDB JOURNAL
, 1994
"... We propose a definition of a spatial database system as a database system that offers spatial data types in its data model and query language, and supports ..."
Abstract

Cited by 216 (9 self)
 Add to MetaCart
(Show Context)
We propose a definition of a spatial database system as a database system that offers spatial data types in its data model and query language, and supports
Discovery of spatial association rules in geographic information databases
, 1995
"... Abstract. Spatial data mining, i.e., discovery of interesting, implicit knowledge in spatial databases, is an important task for understanding and use of spatial data and knowledgebases. In this paper, an e cient method for mining strong spatial association rules in geographic information database ..."
Abstract

Cited by 210 (14 self)
 Add to MetaCart
(Show Context)
Abstract. Spatial data mining, i.e., discovery of interesting, implicit knowledge in spatial databases, is an important task for understanding and use of spatial data and knowledgebases. In this paper, an e cient method for mining strong spatial association rules in geographic information databases is proposed and studied. A spatial association rule is a rule indicating certain association relationship among a set of spatial and possibly some nonspatial predicates. A strong rule indicates that the patterns in the rule have relatively frequent occurrences in the database and strong implication relationships. Several optimization techniques are explored, including a twostep spatial computation technique (approximate computation on large sets, and re ned computations on small promising patterns), shared processing in the derivation of large predicates at multiple concept levels, etc. Our analysis shows that interesting association rules can be discovered e ciently in large spatial databases. 1
Partition Based SpatialMerge Join
, 1996
"... This paper describes PBSM (Partition Based SpatialMerge), a new algorithm for performing spatial join operation. This algorithm is especially effective when neither of the inputs to the join have an index on the joining attribute. Such a situation could arise if both inputs to the join are interme ..."
Abstract

Cited by 185 (12 self)
 Add to MetaCart
(Show Context)
This paper describes PBSM (Partition Based SpatialMerge), a new algorithm for performing spatial join operation. This algorithm is especially effective when neither of the inputs to the join have an index on the joining attribute. Such a situation could arise if both inputs to the join are intermediate results in a complex query, or in a parallel environment where the inputs must be dynamically redistributed. The PBSM algorithm partitions the inputs into manageable chunks, and joins them using a computational geometry based planesweeping technique. This paper also presents a performance study comparing the the traditional indexed nested loops join algorithm, a spatial join algorithm based on joining spatial indices, and the PBSM algorithm. These comparisons are based on complete implementations of these algorithms in Paradise, a database system for handling GIS applications. Using real data sets, the performance study examines the behavior of these spatial join algorithms in a vari...
Indexdriven similarity search in metric spaces
 ACM Transactions on Database Systems
, 2003
"... Similarity search is a very important operation in multimedia databases and other database applications involving complex objects, and involves finding objects in a data set S similar to a query object q, based on some similarity measure. In this article, we focus on methods for similarity search th ..."
Abstract

Cited by 184 (7 self)
 Add to MetaCart
Similarity search is a very important operation in multimedia databases and other database applications involving complex objects, and involves finding objects in a data set S similar to a query object q, based on some similarity measure. In this article, we focus on methods for similarity search that make the general assumption that similarity is represented with a distance metric d. Existing methods for handling similarity search in this setting typically fall into one of two classes. The first directly indexes the objects based on distances (distancebased indexing), while the second is based on mapping to a vector space (mappingbased approach). The main part of this article is dedicated to a survey of distancebased indexing methods, but we also briefly outline how search occurs in mappingbased methods. We also present a general framework for performing search based on distances, and present algorithms for common types of queries that operate on an arbitrary “search hierarchy. ” These algorithms can be applied on each of the methods presented, provided a suitable search hierarchy is defined.
Influence Sets Based on Reverse Nearest Neighbor Queries
 In SIGMOD
, 2000
"... Inherent in the operation of many decision support and continuous referral systems is the notion of the "influence" of a data point on the database. This notion arises in examples such as finding the set of customers affected by the opening of a new store outlet location, notifying the sub ..."
Abstract

Cited by 153 (1 self)
 Add to MetaCart
Inherent in the operation of many decision support and continuous referral systems is the notion of the "influence" of a data point on the database. This notion arises in examples such as finding the set of customers affected by the opening of a new store outlet location, notifying the subset of subscribers to a digital library who will find a newly added document most relevant, etc. Standard approaches to determining the influence set of a data point involve range searching and nearest neighbor queries. In this paper, we formalize a novel notion of influence based on reverse neighbor queries and its variants. Since the nearest neighbor relation is not symmetric, the set of points that are closest to a query point (i.e., the nearest neighbors) differs from the set of points that have the query point as their nearest neighbor (called the reverse nearest neighbors). Influence sets based on reverse nearest neighbor (RNN) queries seem to capture the intuitive notion of influence from our ...