Results 1  10
of
118
Collective classification in network data
, 2008
"... Numerous realworld applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification te ..."
Abstract

Cited by 174 (33 self)
 Add to MetaCart
(Show Context)
Numerous realworld applications produce networked data such as web data (hypertext documents connected via hyperlinks) and communication networks (people connected via communication links). A recent focus in machine learning research has been to extend traditional machine learning classification techniques to classify nodes in such data. In this report, we attempt to provide a brief introduction to this area of research and how it has progressed during the past decade. We introduce four of the most widely used inference algorithms for classifying networked data and empirically compare them on both synthetic and realworld data.
Learning relational probability trees
 In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2003
"... Classification trees are widely used in the machine learning and data mining communities for modeling propositional data. Recent work has extended this basic paradigm to probability estimation trees. Traditional tree learning algorithms assume that instances in the training data are homogenous and i ..."
Abstract

Cited by 147 (36 self)
 Add to MetaCart
(Show Context)
Classification trees are widely used in the machine learning and data mining communities for modeling propositional data. Recent work has extended this basic paradigm to probability estimation trees. Traditional tree learning algorithms assume that instances in the training data are homogenous and independently distributed. Relational probability trees (RPTs) extend standard probability estimation trees to a relational setting in which data instances are heterogeneous and interdependent. Our algorithm for learning the structure and parameters of an RPT searches over a space of relational features that use aggregation functions (e.g. AVERAGE, MODE, COUNT) to dynamically propositionalize relational data and create binary splits within the RPT. Previous work has identified a number of statistical biases due to characteristics of relational data such as autocorrelation and degree disparity. The RPT algorithm uses a novel form of randomization test to adjust for these biases. On a variety of relational learning tasks, RPTs built using randomization tests are significantly smaller than other models and achieve equivalent, or better, performance. 1.
Why Collective Inference Improves Relational Classification
 In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, 2004
"... Procedures for collective inference make simultaneous statistical judgments about the same variables for a set of related data instances. For example, collective inference could be used to simultaneously classify a set of hyperlinked documents or infer the legitimacy of a set of related financial tr ..."
Abstract

Cited by 137 (25 self)
 Add to MetaCart
(Show Context)
Procedures for collective inference make simultaneous statistical judgments about the same variables for a set of related data instances. For example, collective inference could be used to simultaneously classify a set of hyperlinked documents or infer the legitimacy of a set of related financial transactions. Several recent studies indicate that collective inference can significantly reduce classification error when compared with traditional inference techniques. We investigate the underlying mechanisms for this error reduction by reviewing past work on collective inference and characterizing different types of statistical models used for making inference in relational data. We show important differences among these models, and we characterize the necessary and sufficient conditions for reduced classification error based on experiments with real and simulated data.
Relational dependency networks
 Journal of Machine Learning Research
, 2007
"... Recent work on graphical models for relational data has demonstrated significant improvements in classification and inference when models represent the dependencies among instances. Despite its use in conventional statistical models, the assumption of instance independence is contradicted by most re ..."
Abstract

Cited by 112 (24 self)
 Add to MetaCart
Recent work on graphical models for relational data has demonstrated significant improvements in classification and inference when models represent the dependencies among instances. Despite its use in conventional statistical models, the assumption of instance independence is contradicted by most relational datasets. For example, in citation data there are dependencies among the topics of a paper’s references, and in genomic data there are dependencies among the functions of interacting proteins. In this paper, we present relational dependency networks (RDNs), graphical models that are capable of expressing and reasoning with such dependencies in a relational setting. We discuss RDNs in the context of relational Bayes networks and relational Markov networks and outline the relative strengths of RDNs—namely, the ability to represent cyclic dependencies, simple methods for parameter estimation, and efficient structure learning techniques. The strengths of RDNs are due to the use of pseudolikelihood learning techniques, which estimate an efficient approximation of the full joint distribution. We present learned RDNs for a number of realworld datasets and evaluate the models in a prediction context, showing that RDNs identify and exploit cyclic relational dependencies to achieve significant performance gains over conventional conditional models. In addition, we use synthetic data to explore model performance under various relational data characteristics, showing that RDN learning and inference techniques are accurate over a wide range of conditions.
A Simple Relational Classifier
 Proceedings of the Second Workshop on MultiRelational Data Mining (MRDM2003) at KDD2003
, 2003
"... We analyze a Relational Neighbor (RN) classifier, a simple relational predictive model that predicts only based on class labels of related neighbors, using no learning and no inherent attributes. We show that it performs surprisingly well by comparing it to more complex models such as Probabilist ..."
Abstract

Cited by 111 (14 self)
 Add to MetaCart
(Show Context)
We analyze a Relational Neighbor (RN) classifier, a simple relational predictive model that predicts only based on class labels of related neighbors, using no learning and no inherent attributes. We show that it performs surprisingly well by comparing it to more complex models such as Probabilistic Relational Models and Relational Probability Trees on three data sets from published work.
Modeling relationship strength in online social networks
 In Proc. WWW '10
"... Previous work analyzing social networks has mainly focused on binary friendship relations. However, in online social networks the low cost of link formation can lead to networks with heterogeneous relationship strengths (e.g., acquaintances and best friends mixed together). In this case, the binary ..."
Abstract

Cited by 107 (5 self)
 Add to MetaCart
(Show Context)
Previous work analyzing social networks has mainly focused on binary friendship relations. However, in online social networks the low cost of link formation can lead to networks with heterogeneous relationship strengths (e.g., acquaintances and best friends mixed together). In this case, the binary friendship indicator provides only a coarse representation of relationship information. In this work, we develop an unsupervised model to estimate relationship strength from interaction activity (e.g., communication, tagging) and user similarity. More specifically, we formulate a linkbased latent variable model, along with a coordinate ascent optimization procedure for the inference. We evaluate our approach on realworld data from Facebook, showing that the estimated link weights result in higher autocorrelation and lead to improved classification accuracy. 1
Statistical relational learning for link prediction
 In Proceedings of the Workshop on Learning Statistical Models from Relational Data at IJCAI2003
, 2003
"... Link prediction is a complex, inherently relational, task. Be it in the domain of scientific citations, social networks or hypertext links, the underlying data are extremely noisy and the characteristics useful for prediction are not readily available in a “flat ” file format, but rather involve com ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
Link prediction is a complex, inherently relational, task. Be it in the domain of scientific citations, social networks or hypertext links, the underlying data are extremely noisy and the characteristics useful for prediction are not readily available in a “flat ” file format, but rather involve complex relationships among objects. In this paper, we propose the application of our methodology for Statistical Relational Learning to building link prediction models. We propose an integrated approach to building regression models from data stored in relational databases in which potential predictors are generated by structured search of the space of queries to the database, and then tested for inclusion in a logistic regression. We present experimental results for the task of predicting citations made in scientific literature using relational data taken from CiteSeer. This data includes the citation graph, authorship and publication venues of papers, as well as their word content. 1
Leveraging relational autocorrelation with latent group models
 In MRDM '05: Proceedings of the 4th international workshop on Multirelational mining. ACM
"... Abstract. The presence of autocorrelation provides strong motivation for using relational techniques for learning and inference. Autocorrelation is a statistical dependency between the values of the same variable on related entities and is a nearly ubiquitous characteristic of relational data sets. ..."
Abstract

Cited by 81 (22 self)
 Add to MetaCart
(Show Context)
Abstract. The presence of autocorrelation provides strong motivation for using relational techniques for learning and inference. Autocorrelation is a statistical dependency between the values of the same variable on related entities and is a nearly ubiquitous characteristic of relational data sets. Recent research has explored the use of collective inference techniques to exploit this phenomenon. These techniques achieve significant performance gains by modeling observed correlations among class labels of related instances, but the models fail to capture a frequent cause of autocorrelation—the presence of underlying groups that influence the attributes on a set of entities. We propose a latent group model (LGM) for relational data, which discovers and exploits the hidden structures responsible for the observed autocorrelation among class labels. Modeling the latent group structure improves model performance, increases inference efficiency, and enhances our understanding of the datasets. We evaluate performance on three relational classification tasks and show that LGM outperforms models that ignore latent group structure when there is little known information with which to seed inference.
Dependency Networks for Relational Data
 In Proceedings of the 4th IEEE International Conference on Data Mining
, 2004
"... Instance independence is a critical assumption of traditional machine learning methods contradicted by many relational datasets. For example, in scientific literature datasets there are dependencies among the references of a paper. Recent work on graphical models for relational data has demonstrated ..."
Abstract

Cited by 71 (10 self)
 Add to MetaCart
(Show Context)
Instance independence is a critical assumption of traditional machine learning methods contradicted by many relational datasets. For example, in scientific literature datasets there are dependencies among the references of a paper. Recent work on graphical models for relational data has demonstrated significant performance gains for models that exploit the dependencies among instances. In this paper, we present relational dependency networks (RDNs), a new form of graphical model capable of reasoning with such dependencies in a relational setting. We describe the details of RDN models and outline their strengths, most notably the ability to learn and reason with cyclic relational dependencies. We present RDN models learned on a number of realworld datasets, and evaluate the models in a classification context, showing significant performance improvements. In addition, we use synthetic data to evaluate the quality of model learning and inference procedures. 1.
Using relational knowledge discovery to prevent securities fraud
 In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
, 2005
"... We describe an application of relational knowledge discovery to a key regulatory mission of the National Association of Securities Dealers (NASD). NASD is the world’s largest privatesector securities regulator, with responsibility for preventing and discovering misconduct among securities brokers. ..."
Abstract

Cited by 64 (16 self)
 Add to MetaCart
(Show Context)
We describe an application of relational knowledge discovery to a key regulatory mission of the National Association of Securities Dealers (NASD). NASD is the world’s largest privatesector securities regulator, with responsibility for preventing and discovering misconduct among securities brokers. Our goal was to help focus NASD’s limited regulatory resources on the brokers who are most likely to engage in securities violations. Using statistical relational learning algorithms, we developed models that rank brokers with respect to the probability that they would commit a serious violation of securities regulations in the near future. Our models incorporate organizational relationships among brokers (e.g., past coworker), which domain experts consider important but have not been easily used before now. The learned models were subjected to an extensive evaluation using more than 18 months of data unseen by the model developers and comprising over two person weeks of effort by NASD staff. Model predictions were found to correlate highly with the subjective evaluations of experienced NASD examiners. Furthermore, in all performance measures, our models performed as well as or better than the handcrafted rules that are currently in use at NASD.