Results 1 -
2 of
2
Staged configuration using feature models
- SOFTWARE PRODUCT LINES: THIRD INTERNATIONAL CONFERENCE, SPLC 2004
, 2004
"... Feature modeling is an important approach to capturing commonalities and variabilities in system families and product lines. In this paper, we propose a cardinality-based notation for feature modeling, which integrates a number of existing extensions of previous approaches. We then introduce and mot ..."
Abstract
-
Cited by 108 (4 self)
- Add to MetaCart
(Show Context)
Feature modeling is an important approach to capturing commonalities and variabilities in system families and product lines. In this paper, we propose a cardinality-based notation for feature modeling, which integrates a number of existing extensions of previous approaches. We then introduce and motivate the novel concept of staged configuration. Staged configuration can be achieved by the stepwise specialization of feature models. This is important because in a realistic development process, different groups and different people eliminate product variability in different stages. We also indicate how cardinality-based feature models and their specialization can be given a precise formal semantics.
Overview of generative software development
- In Proceedings of Unconventional Programming Paradigms (UPP) 2004, 15-17 September, Mont Saint-Michel, France, Revised Papers
, 2004
"... Abstract. System family engineering seeks to exploit the commonalities among systems from a given problem domain while managing the variabilities among them in a systematic way. In system family engineering, new system variants can be rapidly created based on a set of reusable assets (such as a comm ..."
Abstract
-
Cited by 53 (4 self)
- Add to MetaCart
(Show Context)
Abstract. System family engineering seeks to exploit the commonalities among systems from a given problem domain while managing the variabilities among them in a systematic way. In system family engineering, new system variants can be rapidly created based on a set of reusable assets (such as a common architecture, components, models, etc.). Generative software development aims at modeling and implementing system families in such a way that a given system can be automatically generated from a specification written in one or more textual or graphical domainspecific languages. This paper gives an overview of the basic concepts and ideas of generative software development including DSLs, domain and application engineering, generative domain models, networks of domains, and technology projections. The paper also discusses the relationship of generative software development to other emerging areas such as Model Driven Development and Aspect-Oriented Software Development. 1