Results 1  10
of
317
A comparison of document clustering techniques
 In KDD Workshop on Text Mining
, 2000
"... This paper presents the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and Kmeans. (We used both a “standard” Kmeans algorithm and a “bisecting ” Kmeans algorithm.) Our results indicate that the bisecting Kmeans technique is ..."
Abstract

Cited by 613 (27 self)
 Add to MetaCart
This paper presents the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and Kmeans. (We used both a “standard” Kmeans algorithm and a “bisecting ” Kmeans algorithm.) Our results indicate that the bisecting Kmeans technique is better than the standard Kmeans approach and (somewhat surprisingly) as good or better than the hierarchical approaches that we tested.
Survey of clustering algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract

Cited by 499 (4 self)
 Add to MetaCart
(Show Context)
Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.
Xmeans: Extending Kmeans with Efficient Estimation of the Number of Clusters
 In Proceedings of the 17th International Conf. on Machine Learning
, 2000
"... Despite its popularity for general clustering, Kmeans suffers three major shortcomings; it scales poorly computationally, the number of clusters K has to be supplied by the user, and the search is prone to local minima. We propose solutions for the first two problems, and a partial remedy for the t ..."
Abstract

Cited by 418 (5 self)
 Add to MetaCart
Despite its popularity for general clustering, Kmeans suffers three major shortcomings; it scales poorly computationally, the number of clusters K has to be supplied by the user, and the search is prone to local minima. We propose solutions for the first two problems, and a partial remedy for the third. Building on prior work for algorithmic acceleration that is not based on approximation, we introduce a new algorithm that efficiently, searches the space of cluster locations and number of clusters to optimize the Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC) measure. The innovations include two new ways of exploiting cached sufficient statistics and a new very efficient test that in one Kmeans sweep selects the most promising subset of classes for refinement. This gives rise to a fast, statistically founded algorithm that outputs both the number of classes and their parameters. Experiments show this technique reveals the true number of classes in the underlying distribution, and that it is much faster than repeatedly using accelerated Kmeans for different values of K.
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 408 (0 self)
 Add to MetaCart
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Scaling Clustering Algorithms to Large Databases”, Microsoft Research Report:
, 1998
"... Abstract Practical clustering algorithms require multiple data scans to achieve convergence. For large databases, these scans become prohibitively expensive. We present a scalable clustering framework applicable to a wide class of iterative clustering. We require at most one scan of the database. I ..."
Abstract

Cited by 304 (5 self)
 Add to MetaCart
Abstract Practical clustering algorithms require multiple data scans to achieve convergence. For large databases, these scans become prohibitively expensive. We present a scalable clustering framework applicable to a wide class of iterative clustering. We require at most one scan of the database. In this work, the framework is instantiated and numerically justified with the popular KMeans clustering algorithm. The method is based on identifying regions of the data that are compressible, regions that must be maintained in memory, and regions that are discardable. The algorithm operates within the confines of a limited memory buffer. Empirical results demonstrate that the scalable scheme outperforms a samplingbased approach. In our scheme, data resolution is preserved to the extent possible based upon the size of the allocated memory buffer and the fit of current clustering model to the data. The framework is naturally extended to update multiple clustering models simultaneously. We empirically evaluate on synthetic and publicly available data sets.
Clustering with instancelevel constraints
 In Proceedings of the Seventeenth International Conference on Machine Learning
, 2000
"... One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningf ..."
Abstract

Cited by 206 (7 self)
 Add to MetaCart
(Show Context)
One goal of research in artificial intelligence is to automate tasks that currently require human expertise; this automation is important because it saves time and brings problems that were previously too large to be solved into the feasible domain. Data analysis, or the ability to identify meaningful patterns and trends in large volumes of data, is an important task that falls into this category. Clustering algorithms are a particularly useful group of data analysis tools. These methods are used, for example, to analyze satellite images of the Earth to identify and categorize different land and foliage types or to analyze telescopic observations to determine what distinct types of astronomical bodies exist and to categorize each observation. However, most existing clustering methods apply general similarity techniques rather than making use of problemspecific information. This dissertation first presents a novel method for converting existing clustering algorithms into constrained clustering algorithms. The resulting methods are able to accept domainspecific information in the form of constraints on the output clusters. At the most general level, each constraint is an instancelevel statement
Kmeans Clustering via Principal Component Analysis
, 2004
"... Principal component analysis (PCA) is a widely used statistical technique for unsupervised dimension reduction. Kmeans clustering is a commonly used data clustering for performing unsupervised learning tasks. Here we ..."
Abstract

Cited by 201 (5 self)
 Add to MetaCart
Principal component analysis (PCA) is a widely used statistical technique for unsupervised dimension reduction. Kmeans clustering is a commonly used data clustering for performing unsupervised learning tasks. Here we
Spectral Relaxation for Kmeans Clustering
, 2001
"... The popular Kmeans clustering partitions a data set by minimizing a sumofsquares cost function. A coordinate descend method is then used to find local minima. In this paper we show that the minimization can be reformulated as a trace maximization problem associated with the Gram matrix of the dat ..."
Abstract

Cited by 198 (27 self)
 Add to MetaCart
(Show Context)
The popular Kmeans clustering partitions a data set by minimizing a sumofsquares cost function. A coordinate descend method is then used to find local minima. In this paper we show that the minimization can be reformulated as a trace maximization problem associated with the Gram matrix of the data vectors. Furthermore, we show that a relaxed version of the trace maximization problem possesses global optimal solutions which can be obtained by computing a partial eigendecomposition of the Gram matrix, and the cluster assignment for each data vectors can be found by computing a pivoted QR decomposition of the eigenvector matrix. As a byproduct we also derive a lower bound for the minimum of the sumofsquares cost function.
PrivacyPreserving KMeans Clustering over Vertically Partitioned Data
 IN SIGKDD
, 2003
"... Privacy and security concerns can prevent sharing of data, derailing data mining projects. Distributed knowledge discovery, if done correctly, can alleviate this problem. The key is to obtain valid results, while providing guarantees on the (non)disclosure of data. We present a method for kmeans cl ..."
Abstract

Cited by 167 (10 self)
 Add to MetaCart
(Show Context)
Privacy and security concerns can prevent sharing of data, derailing data mining projects. Distributed knowledge discovery, if done correctly, can alleviate this problem. The key is to obtain valid results, while providing guarantees on the (non)disclosure of data. We present a method for kmeans clustering when different sites contain different attributes for a common set of entities. Each site learns the cluster of each entity, but learns nothing about the attributes at other sites.
Feature selection for unsupervised learning
 Journal of Machine Learning Research
, 2004
"... In this paper, we identify two issues involved in developing an automated feature subset selection algorithm for unlabeled data: the need for finding the number of clusters in conjunction with feature selection, and the need for normalizing the bias of feature selection criteria with respect to dime ..."
Abstract

Cited by 146 (4 self)
 Add to MetaCart
(Show Context)
In this paper, we identify two issues involved in developing an automated feature subset selection algorithm for unlabeled data: the need for finding the number of clusters in conjunction with feature selection, and the need for normalizing the bias of feature selection criteria with respect to dimension. We explore the feature selection problem and these issues through FSSEM (Feature Subset Selection using ExpectationMaximization (EM) clustering) and through two different performance criteria for evaluating candidate feature subsets: scatter separability and maximum likelihood. We present proofs on the dimensionality biases of these feature criteria, and present a crossprojection normalization scheme that can be applied to any criterion to ameliorate these biases. Our experiments show the need for feature selection, the need for addressing these two issues, and the effectiveness of our proposed solutions.