Results

**1 - 7**of**7**### Large System Analysis of the Energy Consumption Distribution in Multi-User MIMO Systems with Mobility

, 2015

"... ..."

### Interference management in 5G reverse TDD HetNets: A large system analysis

- IEEE J. SEL. AREAS COMMUN
, 2014

"... ..."

(Show Context)
### 1Large System Analysis of Base Station Cooperation for Power Minimization

"... IEEE Abstract—This work focuses on a large-scale multi-cell multi-user MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments. We consider the design of the linear precoder that minimizes the total power consumption while ensuring target user ..."

Abstract
- Add to MetaCart

(Show Context)
IEEE Abstract—This work focuses on a large-scale multi-cell multi-user MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments. We consider the design of the linear precoder that minimizes the total power consumption while ensuring target user rates. Three configurations with different degrees of cooperation among BSs are considered: the coordinated beamforming scheme (only channel state information is shared among BSs), the coordinated multipoint MIMO processing technology or network MIMO (channel state and data cooperation), and a single cell beam-forming scheme (only local channel state information is used for beamforming while channel state cooperation is needed for power allocation). The analysis is conducted assuming that N and K grow large with a non trivial ratio K/N and imperfect channel state information (modeled by the generic Gauss-Markov formulation form) is available at the BSs. Tools of random matrix theory are used to compute, in explicit form, deterministic approximations for: (i) the parameters of the optimal precoder; (ii) the powers needed to ensure target rates; and (iii) the total transmit power. These results are instrumental to get further insight into the structure of the optimal precoders and also to reduce the implementation complexity in large-scale networks. Numerical results are used to validate the asymptotic analysis in the finite system regime and to make comparisons among the different configurations. I.

### Deterministic Equivalent for Max-Min SINR over Random User Locations

"... Abstract-The max-min signal-to-interference-plus-noise ratio (SINR) problem is considered in a coordinated network wherein L base stations (BSs) each equipped with N antennas serve in total K single-antenna users that are uniformly distributed in the network. We conduct the analysis in the asymptot ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract-The max-min signal-to-interference-plus-noise ratio (SINR) problem is considered in a coordinated network wherein L base stations (BSs) each equipped with N antennas serve in total K single-antenna users that are uniformly distributed in the network. We conduct the analysis in the asymptotic regime in which N and K grow large to compute a deterministic approximation for the max-min SINR. The results are independent from fast-fading and users' locations and thus allow one to determine the optimal max-min SINR given basic system parameters such as cell radius, K, N and pathloss exponent. The provided framework can be utilized for analyzing the problem without the need to run system level simulations and for finding the optimal N , K, resource allocation and BS placement. Numerical results are used to validate the analytical results in a finite system regime and to evaluate the effects of system parameters on the system performance.

### Large System Analysis of Base Station Cooperation for Power Minimization

"... Abstract-This work focuses on a large-scale multi-cell multiuser MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments. We consider the design of the linear precoder that minimizes the total power consumption while ensuring target user rates ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract-This work focuses on a large-scale multi-cell multiuser MIMO system in which L base stations (BSs) of N antennas each communicate with K single-antenna user equipments. We consider the design of the linear precoder that minimizes the total power consumption while ensuring target user rates. Three configurations with different degrees of cooperation among BSs are considered: the coordinated beamforming scheme (only channel state information is shared among BSs), the coordinated multipoint MIMO processing technology or network MIMO (channel state and data cooperation), and a single cell beamforming scheme (only local channel state information is used for beamforming while channel state cooperation is needed for power allocation). The analysis is conducted assuming that N and K grow large with a non trivial ratio K/N and imperfect channel state information (modeled by the generic Gauss-Markov formulation form) is available at the BSs. Tools of random matrix theory are used to compute, in explicit form, deterministic approximations for: (i) the parameters of the optimal precoder; (ii) the powers needed to ensure target rates; and (iii) the total transmit power. These results are instrumental to get further insight into the structure of the optimal precoders and also to reduce the implementation complexity in large-scale networks. Numerical results are used to validate the asymptotic analysis in the finite system regime and to make comparisons among the different configurations.

### Interference Management in 5G Reverse TDD HetNets with Wireless Backhaul: A Large System Analysis

"... Abstract-This work analyzes a heterogeneous network (HetNet), which comprises a macro base station (BS) equipped with a large number of antennas and an overlaid dense tier of small cell access points (SCAs) using a wireless backhaul for data traffic. The static and low mobility user equipment termi ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract-This work analyzes a heterogeneous network (HetNet), which comprises a macro base station (BS) equipped with a large number of antennas and an overlaid dense tier of small cell access points (SCAs) using a wireless backhaul for data traffic. The static and low mobility user equipment terminals (UEs) are associated with the SCAs while those with mediumto-high mobility are served by the macro BS. A reverse time division duplexing (TDD) protocol is used by the two tiers, which allows the BS to locally estimate both the intra-tier and inter-tier channels. This knowledge is then used at the BS either in the uplink (UL) or in the downlink (DL) to simultaneously serve the macro UEs (MUEs) and to provide the wireless backhaul to SCAs. A concatenated linear precoding technique employing either zeroforcing (ZF) or regularized ZF is used at the BS to simultaneously serve MUEs and SCAs in DL while nulling interference toward those SCAs in UL. We evaluate and characterize the performance of the system through the power consumption of UL and DL transmissions under the assumption that target rates must be satisfied and imperfect channel state information is available for MUEs. The analysis is conducted in the asymptotic regime where the number of BS antennas and the network size (MUEs and SCAs) grow large with fixed ratios. Results from large system analysis are used to provide concise formulae for the asymptotic UL and DL transmit powers and precoding vectors under the above assumptions. Numerical results are used to validate the analysis in different settings and to make comparisons with alternative network architectures.

### 1Power Efficient Low Complexity Precoding for Massive MIMO Systems

"... Abstract—This work aims at designing a low-complexity precoding technique in the downlink of a large-scale multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with M antennas to serve K single-antenna user equipments. This is motivated by the high computational co ..."

Abstract
- Add to MetaCart

(Show Context)
Abstract—This work aims at designing a low-complexity precoding technique in the downlink of a large-scale multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with M antennas to serve K single-antenna user equipments. This is motivated by the high computational complexity required by the widely used zero-forcing or regularized zero-forcing precoding techniques, especially when K grows large. To reduce the computational burden, we adopt a precoding technique based on truncated polynomial expansion (TPE) and make use of the asymptotic analysis to compute the deterministic equivalents of its corresponding signal-to-interference-plus-noise ratios (SINRs) and transmit power. The asymptotic analysis is conducted in the regime in which M and K tend to infinity with the same pace under the assumption that imperfect channel state information is available at the BS. The results are then used to compute the TPE weights that minimize the asymptotic transmit power while meeting a set of target SINR constraints. Numerical simulations are used to validate the theoretical analysis. I.