Results 1  10
of
128
Achieving 100% Throughput in an InputQueued Switch
 IEEE TRANSACTIONS ON COMMUNICATIONS
, 1996
"... It is well known that headofline (HOL) blocking limits the throughput of an inputqueued switch with FIFO queues. Under certain conditions, the throughput can be shown to be limited to approximately 58%. It is also known that if nonFIFO queueing policies are used, the throughput can be increas ..."
Abstract

Cited by 520 (27 self)
 Add to MetaCart
It is well known that headofline (HOL) blocking limits the throughput of an inputqueued switch with FIFO queues. Under certain conditions, the throughput can be shown to be limited to approximately 58%. It is also known that if nonFIFO queueing policies are used, the throughput can be increased. However, it has not been previously shown that if a suitable queueing policy and scheduling algorithm are used then it is possible to achieve 100% throughput for all independent arrival processes. In this paper we prove this to be the case using a simple linear programming argument and quadratic Lyapunov function. In particular, we assume that each input maintains a separate FIFO queue for each output and that the switch is scheduled using a maximum weight bipartite matching algorithm. We introduce two maximum weight matching algorithms: LQF and OCF. Both
Dynamic Power Allocation and Routing for Time Varying Wireless Networks
 IEEE Journal on Selected Areas in Communications
, 2003
"... We consider dynamic routing and power allocation for a wireless network with time varying channels. The network consists of power constrained nodes which transmit over wireless links with adaptive transmission rates. Packets randomly enter the system at each node and wait in output queues to be tran ..."
Abstract

Cited by 353 (72 self)
 Add to MetaCart
We consider dynamic routing and power allocation for a wireless network with time varying channels. The network consists of power constrained nodes which transmit over wireless links with adaptive transmission rates. Packets randomly enter the system at each node and wait in output queues to be transmitted through the network to their destinations. We establish the capacity region of all rate matrices (# ij ) that the system can stably supportwhere (# ij ) represents the rate of traffic originating at node i and destined for node j. A joint routing and power allocation policy is developed which stabilizes the system and provides bounded average delay guarantees whenever the input rates are within this capacity region. Such performance holds for general arrival and channel state processes, even if these processes are unknown to the network controller. We then apply this control algorithm to an adhoc wireless network where channel variations are due to user mobility, and compare its performance with the GrossglauserTse relay model developed in [13].
On Positive Harris Recurrence of Multiclass Queueing Networks: A Unified Approach Via Fluid Limit Models
 Annals of Applied Probability
, 1995
"... It is now known that the usual traffic condition (the nominal load being less than one at each station) is not sufficient for stability for a multiclass open queueing network. Although there has been some progress in establishing the stability conditions for a multiclass network, there is no unified ..."
Abstract

Cited by 349 (27 self)
 Add to MetaCart
It is now known that the usual traffic condition (the nominal load being less than one at each station) is not sufficient for stability for a multiclass open queueing network. Although there has been some progress in establishing the stability conditions for a multiclass network, there is no unified approach to this problem. In this paper, we prove that a queueing network is positive Harris recurrent if the corresponding fluid limit model eventually reaches zero and stays there regardless of the initial system configuration. As an application of the result, we prove that single class networks, multiclass feedforward networks and firstbufferfirstserved preemptive resume discipline in a reentrant line are positive Harris recurrent under the usual traffic condition. AMS 1991 subject classification: Primary 60K25, 90B22; Secondary 60K20, 90B35. Key words and phrases: multiclass queueing networks, Harris positive recurrent, stability, fluid approximation Running title: Stability of mu...
Fairness and optimal stochastic control for heterogeneous networks
 Proc. IEEE INFOCOM, March 2005. TRANSACTIONS ON NETWORKING, VOL
, 2008
"... Abstract — We consider optimal control for general networks with both wireless and wireline components and time varying channels. A dynamic strategy is developed to support all traffic whenever possible, and to make optimally fair decisions about which data to serve when inputs exceed network capaci ..."
Abstract

Cited by 261 (63 self)
 Add to MetaCart
Abstract — We consider optimal control for general networks with both wireless and wireline components and time varying channels. A dynamic strategy is developed to support all traffic whenever possible, and to make optimally fair decisions about which data to serve when inputs exceed network capacity. The strategy is decoupled into separate algorithms for flow control, routing, and resource allocation, and allows each user to make decisions independent of the actions of others. The combined strategy is shown to yield data rates that are arbitrarily close to the optimal operating point achieved when all network controllers are coordinated and have perfect knowledge of future events. The cost of approaching this fair operating point is an endtoend delay increase for data that is served by the network.
Energy optimal control for time varying wireless networks
 IEEE Trans. Inform. Theory
, 2006
"... Abstract — We develop a dynamic control strategy for minimizing energy expenditure in a time varying wireless network with adaptive transmission rates. The algorithm operates without knowledge of traffic rates or channel statistics, and yields average power that is arbitrarily close to the minimum p ..."
Abstract

Cited by 181 (50 self)
 Add to MetaCart
Abstract — We develop a dynamic control strategy for minimizing energy expenditure in a time varying wireless network with adaptive transmission rates. The algorithm operates without knowledge of traffic rates or channel statistics, and yields average power that is arbitrarily close to the minimum possible value achieved by an algorithm optimized with complete knowledge of future events. Proximity to this optimal solution is shown to be inversely proportional to network delay. We then present a similar algorithm that solves the related problem of maximizing network throughput subject to peak and average power constraints. The techniques used in this paper are novel and establish a foundation for stochastic network optimization.
Scheduling Algorithms for Inputqueued Cell Switches
, 1995
"... The algorithms described in this thesis are designed to schedule cells in a very highspeed, parallel, inputqueued crossbar switch. We present several novel scheduling algorithms that we have devised, each aims to match the set of inputs of an inputqueued switch to the set of outputs more effici ..."
Abstract

Cited by 173 (5 self)
 Add to MetaCart
The algorithms described in this thesis are designed to schedule cells in a very highspeed, parallel, inputqueued crossbar switch. We present several novel scheduling algorithms that we have devised, each aims to match the set of inputs of an inputqueued switch to the set of outputs more efficiently, fairly and quickly than existing techniques. In Chapter 2 we present the simplest and fastest of these algorithms: SLIP  a parallel algorithm that uses rotating priority ("roundrobin") arbitration. SLIP is simple: it is readily implemented in hardware and can operate at high speed. SLIP has high performance: for uniform i.i.d. Bernoulli arrivals, SLIP is stable for any admissible load, because the arbiters tend to desynchronize. We present analytical results to model this behavior. However, SLIP is not always stable and is not always monotonic: adding more traffic can actually make the algorithm operate more efficiently. We present an approximate analytical model of this behavior. SLIP prevents starvation: all contending inputs are eventually served. We present simulation results, indicating SLIP's performance. We argue that SLIP can be readily implemented for a 32x32 switch on a single chip. In Chapter 3 we present iSLIP, an iterative algorithm that improves upon SLIP by converging on a maximal size match. The performance of iSLIP improves with up to log 2 N iterations. We show that although it has a longer running time than SLIP, an iSLIP scheduler is little more complex to implement. In Chapter 4 we describe maximum or maximal weight matching algorithms based on the occupancy of queues, or waiting times of cells. These algorithms are stabl...
Stable scheduling policies for fading wireless channels
 IEEE/ACM Trans. Networking
, 2005
"... We study the problem of stable scheduling for a class of wireless networks. The goal is to stabilize the queues holding information to be transmitted over a fading channel. Few assumptions are made on the arrival process statistics other than the assumption that their mean values lie within the capa ..."
Abstract

Cited by 132 (38 self)
 Add to MetaCart
(Show Context)
We study the problem of stable scheduling for a class of wireless networks. The goal is to stabilize the queues holding information to be transmitted over a fading channel. Few assumptions are made on the arrival process statistics other than the assumption that their mean values lie within the capacity region and that they satisfy a version of the law of large numbers. We prove that, for any mean arrival rate that lies in the capacity region, the queues will be stable under our policy. Moreover, we show that it is easy to incorporate imperfect queue length information and other approximations that can simplify the implementation of our policy. 1
A Practical Scheduling Algorithm to Achieve 100% Throughput in InputQueued Switches.
"... Input queueing is becoming increasingly used for highbandwidth switches and routers. In previous work, it was proved that it is possible to achieve 100 % throughput for inputqueued switches using a combination of virtual output queueing and a scheduling algorithm called LQF. However, this is only a ..."
Abstract

Cited by 126 (7 self)
 Add to MetaCart
Input queueing is becoming increasingly used for highbandwidth switches and routers. In previous work, it was proved that it is possible to achieve 100 % throughput for inputqueued switches using a combination of virtual output queueing and a scheduling algorithm called LQF. However, this is only a theoretical result: LQF is too complex to implement in hardware. In this paper we introduce a new algorithm called Longest Port First (LPF), which is designed to overcome the complexity problems of LQF, and can be implemented in hardware at high speed. By giving preferential service based on queue lengths, we prove that LPF can achieve 100 % throughput.
Stability and Convergence of Moments for Multiclass Queueing Networks via Fluid Limit Models
 IEEE Transactions on Automatic Control
, 1995
"... The subject of this paper is open multiclass queueing networks, which are common models of communication networks, and complex manufacturing systems such as wafer fabrication facilities. We provide sufficient conditions for the existence of bounds on longrun average moments of the queue lengths at ..."
Abstract

Cited by 113 (37 self)
 Add to MetaCart
(Show Context)
The subject of this paper is open multiclass queueing networks, which are common models of communication networks, and complex manufacturing systems such as wafer fabrication facilities. We provide sufficient conditions for the existence of bounds on longrun average moments of the queue lengths at the various stations, and we bound the rate of convergence of the mean queue length to its steady state value. Our work provides a solid foundation for performance analysis either by analytical methods or by simulation. These results are applied to several examples including reentrant lines, generalized Jackson networks, and a general polling model as found in computer networks applications. Keywords: Multiclass queueing networks, ergodicity, general state space Markov processes, polling models, generalized Jackson networks, stability, performance analysis. 1 Introduction The subject of this paper is open multiclass queueing networks, which are models of complex systems such as wafer fabri...
Fluid Approximations And Stability Of Multiclass Queueing Networks: WorkConserving Disciplines
, 1995
"... This paper studies the fluid approximation (also known as the functional strong lawoflargenumbers) and the stability (positive Harris recurrent) for a multiclass queueing network. Both of these are related to the stabilities of a linear fluid model, constructed from the firstorder parameters (i. ..."
Abstract

Cited by 86 (9 self)
 Add to MetaCart
This paper studies the fluid approximation (also known as the functional strong lawoflargenumbers) and the stability (positive Harris recurrent) for a multiclass queueing network. Both of these are related to the stabilities of a linear fluid model, constructed from the firstorder parameters (i.e., longrun average arrivals, services and routings) of the queueing network. It is proved that the fluid approximation for the queueing network exists if the corresponding linear fluid model is weakly stable, and that the queueing network is stable if the corresponding linear fluid model is (strongly) stable. Sufficient conditions are found for the stabilities of a linear fluid model. Keywords and phrases: Multiclass queueing networks, fluid models, fluid approximations, stability, positive Harris recurrent, and workconserving service disciplines. Preliminary Versions: September 1993 Revisions: June 1994; September 1994; January 1995 To appear in Annals of Applied Probability AMS 1980 su...