Results 1 - 10
of
85
Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems
, 2008
"... Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the s ..."
Abstract
-
Cited by 90 (12 self)
- Add to MetaCart
Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed.
On the computation of all global minimizers through particle swarm optimization
- IEEE Transactions on Evolutionary Computation
, 2004
"... Abstract—This paper presents approaches for effectively computing all global minimizers of an objective function. The approaches include transformations of the objective function through the recently proposed deflection and stretching techniques, as well as a repulsion source at each detected minimi ..."
Abstract
-
Cited by 79 (18 self)
- Add to MetaCart
Abstract—This paper presents approaches for effectively computing all global minimizers of an objective function. The approaches include transformations of the objective function through the recently proposed deflection and stretching techniques, as well as a repulsion source at each detected minimizer. The aforementioned techniques are incorporated in the context of the particle swarm optimization (PSO) method, resulting in an efficient algorithm which has the ability to avoid previously detected solutions and, thus, detect all global minimizers of a function. Experimental results on benchmark problems originating from the fields of global optimization, dynamical systems, and game theory, are reported, and conclusions are derived. Index Terms—Deflection technique, detecting all minimizers, dynamical systems, Nash equilibria, particle swarm optimization (PSO), periodic orbits, stretching technique. I.
Adaptive Particle Swarm Optimization
, 2008
"... This paper proposes an adaptive particle swarm optimization (APSO) with adaptive parameters and elitist learning strategy (ELS) based on the evolutionary state estimation (ESE) approach. The ESE approach develops an ‘evolutionary factor’ by using the population distribution information and relative ..."
Abstract
-
Cited by 67 (2 self)
- Add to MetaCart
(Show Context)
This paper proposes an adaptive particle swarm optimization (APSO) with adaptive parameters and elitist learning strategy (ELS) based on the evolutionary state estimation (ESE) approach. The ESE approach develops an ‘evolutionary factor’ by using the population distribution information and relative particle fitness information in each generation, and estimates the evolutionary state through a fuzzy classification method. According to the identified state and taking into account various effects of the algorithm-controlling parameters, adaptive control strategies are developed for the inertia weight and acceleration coefficients for faster convergence speed. Further, an adaptive ‘elitist learning strategy ’ (ELS) is designed for the best particle to jump out of possible local optima and/or to refine its accuracy, resulting in substantially improved quality of global solutions. The APSO algorithm is tested on 6 unimodal and multimodal functions, and the experimental results demonstrate that the APSO generally outperforms the compared PSOs, in terms of solution accuracy, convergence speed and algorithm reliability.
A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and Turbulence.
, 2002
"... This paper introduces a Multi-Objective Algorithm (MOA) based upon the Particle Swarm Optimisation (PSO) heuristic. ..."
Abstract
-
Cited by 59 (2 self)
- Add to MetaCart
This paper introduces a Multi-Objective Algorithm (MOA) based upon the Particle Swarm Optimisation (PSO) heuristic.
A Nondominated Sorting Particle Swarm Optimizer for Multiobjective Optimization
- Lecture Notes in Computer Science, Proceedings of Genetic and Evolutionary Computation GECCO 2003, Vol. 2723, Part I
, 2003
"... Abstract. This paper introduces a modified PSO, Non-dominated Sorting Particle Swarm Optimizer (NSPSO), for better multiobjective optimization. NSPSO extends the basic form of PSO by making a better use of particles ’ personal bests and offspring for more effective nondomination comparisons. Instead ..."
Abstract
-
Cited by 51 (7 self)
- Add to MetaCart
(Show Context)
Abstract. This paper introduces a modified PSO, Non-dominated Sorting Particle Swarm Optimizer (NSPSO), for better multiobjective optimization. NSPSO extends the basic form of PSO by making a better use of particles ’ personal bests and offspring for more effective nondomination comparisons. Instead of a single comparison between a particle’s personal best and its offspring, NSPSO compares all particles’ personal bests and their offspring in the entire population. This proves to be effective in providing an appropriate selection pressure to propel the swarm population towards the Pareto-optimal front. By using the non-dominated sorting concept and two parameter-free niching methods, NSPSO and its variants have shown remarkable performance against a set of well-known difficult test functions (ZDT series). Our results and comparison with NSGA II show that NSPSO is highly competitive with existing evolutionary and PSO multiobjective algorithms. 1
A note on the learning automata based algorithms for adaptive parameter selection in PSO
- Applied Soft Computing
, 2011
"... in PSO ..."
Improving PSO-based multi-objective optimization using crowding, mutation and � -dominance
- In EMO’2005, pages 505–519. LNCS 3410
, 2005
"... Abstract. In this paper, we propose a new Multi-Objective Particle Swarm Optimizer, which is based on Pareto dominance and the use of a crowding factor to filter out the list of available leaders. We also propose the use of different mutation (or turbulence) operators which act on different subdivis ..."
Abstract
-
Cited by 32 (2 self)
- Add to MetaCart
(Show Context)
Abstract. In this paper, we propose a new Multi-Objective Particle Swarm Optimizer, which is based on Pareto dominance and the use of a crowding factor to filter out the list of available leaders. We also propose the use of different mutation (or turbulence) operators which act on different subdivisions of the swarm. Finally, the proposed approach also incorporates the ¡-dominance concept to fix the size of the set of final solutions produced by the algorithm. Our approach is compared against five state-of-the-art algorithms, including three PSO-based approaches recently proposed. The results indicate that the proposed approach is highly competitive, being able to approximate the front even in cases where all the other PSO-based approaches fail. 1
Swarm Intelligence for Permutation Optimization: Case Study of n-Queens Problem
, 2003
"... This paper introduces a modified Particle Swarm Optimizer which deals with permutation problems. Particles are defined as permutations of a group of unique values. Velocity updates are redefined based on the similarity of two particles. Particles change their permutations with a random rate defined ..."
Abstract
-
Cited by 27 (0 self)
- Add to MetaCart
This paper introduces a modified Particle Swarm Optimizer which deals with permutation problems. Particles are defined as permutations of a group of unique values. Velocity updates are redefined based on the similarity of two particles. Particles change their permutations with a random rate defined by their velocities. A mutation factor is introduced to prevent the current pBest from becoming stuck at local minima. Preliminary study on the n-queens problem shows that the modified PSO is promising in solving constraint satisfication problems.