Results 11  20
of
512
Robust principal component analysis: Exact recovery of corrupted lowrank matrices via convex optimization
 Advances in Neural Information Processing Systems 22
, 2009
"... The supplementary material to the NIPS version of this paper [4] contains a critical error, which was discovered several days before the conference. Unfortunately, it was too late to withdraw the paper from the proceedings. Fortunately, since that time, a correct analysis of the proposed convex prog ..."
Abstract

Cited by 144 (4 self)
 Add to MetaCart
(Show Context)
The supplementary material to the NIPS version of this paper [4] contains a critical error, which was discovered several days before the conference. Unfortunately, it was too late to withdraw the paper from the proceedings. Fortunately, since that time, a correct analysis of the proposed convex programming relaxation has been developed by Emmanuel Candes of Stanford University. That analysis is reported in a joint paper, Robust Principal Component Analysis? by Emmanuel Candes, Xiaodong Li, Yi Ma and John Wright,
Dual averaging methods for regularized stochastic learning and online optimization
 In Advances in Neural Information Processing Systems 23
, 2009
"... We consider regularized stochastic learning and online optimization problems, where the objective function is the sum of two convex terms: one is the loss function of the learning task, and the other is a simple regularization term such as ℓ1norm for promoting sparsity. We develop extensions of Nes ..."
Abstract

Cited by 131 (7 self)
 Add to MetaCart
(Show Context)
We consider regularized stochastic learning and online optimization problems, where the objective function is the sum of two convex terms: one is the loss function of the learning task, and the other is a simple regularization term such as ℓ1norm for promoting sparsity. We develop extensions of Nesterov’s dual averaging method, that can exploit the regularization structure in an online setting. At each iteration of these methods, the learning variables are adjusted by solving a simple minimization problem that involves the running average of all past subgradients of the loss function and the whole regularization term, not just its subgradient. In the case of ℓ1regularization, our method is particularly effective in obtaining sparse solutions. We show that these methods achieve the optimal convergence rates or regret bounds that are standard in the literature on stochastic and online convex optimization. For stochastic learning problems in which the loss functions have Lipschitz continuous gradients, we also present an accelerated version of the dual averaging method.
Templates for Convex Cone Problems with Applications to Sparse Signal Recovery
, 2010
"... This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, app ..."
Abstract

Cited by 124 (7 self)
 Add to MetaCart
This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal firstorder method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the totalvariation norm, ‖W x‖1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with stateoftheart methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient largescale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms. Keywords. Optimal firstorder methods, Nesterov’s accelerated descent algorithms, proximal algorithms, conic duality, smoothing by conjugation, the Dantzig selector, the LASSO, nuclearnorm minimization.
An Accelerated Gradient Method for Trace Norm Minimization
"... We consider the minimization of a smooth loss function regularized by the trace norm of the matrix variable. Such formulation finds applications in many machine learning tasks including multitask learning, matrix classification, and matrix completion. The standard semidefinite programming formulati ..."
Abstract

Cited by 116 (7 self)
 Add to MetaCart
(Show Context)
We consider the minimization of a smooth loss function regularized by the trace norm of the matrix variable. Such formulation finds applications in many machine learning tasks including multitask learning, matrix classification, and matrix completion. The standard semidefinite programming formulation for this problem is computationally expensive. In addition, due to the nonsmooth nature of the trace norm, the optimal firstorder blackbox method for solving such class of problems converges as O ( 1 √), where k is the k iteration counter. In this paper, we exploit the special structure of the trace norm, based on which we propose an extended gradient algorithm that converges as O ( 1 k). We further propose an accelerated gradient algorithm, which achieves the optimal convergence rate of O ( 1 k 2) for smooth problems. Experiments on multitask learning problems demonstrate the efficiency of the proposed algorithms. 1.
Interiorpoint method for nuclear norm approximation with application to system identification
"... ..."
Excessive gap technique in nonsmooth convex minimizarion
 CORE DP
, 2003
"... Abstract. In this paper we introduce a new primaldual technique for convergence analysis of gradient schemes for nonsmooth convex optimization. As an example of its application, we derive a primaldual gradient method for a special class of structured nonsmooth optimization problems, which ensure ..."
Abstract

Cited by 92 (1 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we introduce a new primaldual technique for convergence analysis of gradient schemes for nonsmooth convex optimization. As an example of its application, we derive a primaldual gradient method for a special class of structured nonsmooth optimization problems, which ensures a rate of convergence of the order O ( 1), where k is the iteration count. Another k example is a gradient scheme, which minimizes a nonsmooth strongly convex function with known structure with the rate of convergence O ( 1 k2). In both cases the efficiency of the methods is higher than the corresponding blackbox lower complexity bounds by an order of magnitude.
An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems
 IEEE Trans. Image Process
, 2011
"... Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and con ..."
Abstract

Cited by 89 (9 self)
 Add to MetaCart
(Show Context)
Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and constraint are usually convex, several particular features of these problems (huge dimensionality, nonsmoothness) preclude the use of offtheshelf optimization tools and have stimulated a considerable amount of research. In this paper, we propose a new efficient algorithm to handle one class of constrained problems (often known as basis pursuit denoising) tailored to image recovery applications. The proposed algorithm, which belongs to the family of augmented Lagrangian methods, can be used to deal with a variety of imaging IPLIP, including deconvolution and reconstruction from compressive observations (such as MRI), using either totalvariation or waveletbased (or, more generally, framebased) regularization. The proposed algorithm is an instance of the socalled alternating direction method of multipliers, for which convergence sufficient conditions are known; we show that these conditions are satisfied by the proposed algorithm. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is a strong contender for the stateoftheart. Index Terms—Convex optimization, frames, image reconstruction, image restoration, inpainting, totalvariation. A. Problem Formulation
Efficient schemes for total variation minimization under constraints in image processing
, 2007
"... ..."
(Show Context)