Results 1 
5 of
5
Universal coalgebra: a theory of systems
, 2000
"... In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certa ..."
Abstract

Cited by 408 (42 self)
 Add to MetaCart
In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certain types of automata and more generally, for (transition and dynamical) systems. An important property of initial algebras is that they satisfy the familiar principle of induction. Such a principle was missing for coalgebras until the work of Aczel (NonWellFounded sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stanford, 1988) on a theory of nonwellfounded sets, in which he introduced a proof principle nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally stemming from the world of concurrent programming languages. Using the notion of coalgebra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally dual to that of congruence on algebras. Thus, the three basic notions of universal algebra: algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, homomorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
Expressivity of coalgebraic modal logic: The limits and beyond
 IN FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, VOLUME 3441 OF LNCS
, 2005
"... Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, c ..."
Abstract

Cited by 55 (12 self)
 Add to MetaCart
(Show Context)
Modal logic has a good claim to being the logic of choice for describing the reactive behaviour of systems modeled as coalgebras. Logics with modal operators obtained from socalled predicate liftings have been shown to be invariant under behavioral equivalence. Expressivity results stating that, conversely, logically indistinguishable states are behaviorally equivalent depend on the existence of separating sets of predicate liftings for the signature functor at hand. Here, we provide a classification result for predicate liftings which leads to an easy criterion for the existence of such separating sets, and we give simple examples of functors that fail to admit expressive normal or monotone modal logics, respectively, or in fact an expressive (unary) modal logic at all. We then move on to polyadic modal logic, where modal operators may take more than one argument formula. We show that every accessible functor admits an expressive polyadic modal logic. Moreover, expressive polyadic modal logics are, unlike unary modal logics, compositional.
Foundational, Compositional (Co)datatypes for HigherOrder Logic  Category Theory Applied to Theorem Proving
"... Higherorder logic (HOL) forms the basis of several popular interactive theorem provers. These follow the definitional approach, reducing highlevel specifications to logical primitives. This also applies to the support for datatype definitions. However, the internal datatype construction used in H ..."
Abstract

Cited by 16 (10 self)
 Add to MetaCart
(Show Context)
Higherorder logic (HOL) forms the basis of several popular interactive theorem provers. These follow the definitional approach, reducing highlevel specifications to logical primitives. This also applies to the support for datatype definitions. However, the internal datatype construction used in HOL4, HOL Light, and Isabelle/HOL is fundamentally noncompositional, limiting its efficiency and flexibility, and it does not cater for codatatypes. We present a fully modular framework for constructing (co)datatypes in HOL, with support for mixed mutual and nested (co)recursion. Mixed (co)recursion enables type definitions involving both datatypes and codatatypes, such as the type of finitely branching trees of possibly infinite depth. Our framework draws heavily from category theory. The key notion is that of a rich type constructor—a functor satisfying specific properties preserved by interesting categorical operations. Our ideas are formalized in Isabelle and implemented as a new definitional package, answering a longstanding user request.
Coalgebras of Bounded Type
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
, 2001
"... Using results of Trnková, we first show that subcoalgebras are always closed under finite intersections. Assuming that the type functor F is bounded, we obtain a concrete representation of the terminal Fcoalgebra. Several equivalent characterizations of boundedness are provided. ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
Using results of Trnková, we first show that subcoalgebras are always closed under finite intersections. Assuming that the type functor F is bounded, we obtain a concrete representation of the terminal Fcoalgebra. Several equivalent characterizations of boundedness are provided.
Abstract CoMeta Project Workshop Preliminary Version Properties of Set Functors ⋆
"... We prove that any endofunctor on a classtheoretic category has a final coalgebra. Moreover, we characterize functors on settheoretic categories which are identical on objects, and functors which are constant on objects. Key words: categories of sets, partially defined endofunctors, identity functo ..."
Abstract
 Add to MetaCart
We prove that any endofunctor on a classtheoretic category has a final coalgebra. Moreover, we characterize functors on settheoretic categories which are identical on objects, and functors which are constant on objects. Key words: categories of sets, partially defined endofunctors, identity functor, constant functor, final coalgebra.