Results 1  10
of
144
Integral transforms and Drinfeld centers in derived algebraic geometry
"... Compact objects are as necessary to this subject as air to breathe. R.W. Thomason to A. Neeman, [N3] Abstract. We study natural algebraic operations on categories arising in algebraic geometry and its homotopytheoretic generalization, derived algebraic geometry. We work with a broad class of derive ..."
Abstract

Cited by 88 (18 self)
 Add to MetaCart
(Show Context)
Compact objects are as necessary to this subject as air to breathe. R.W. Thomason to A. Neeman, [N3] Abstract. We study natural algebraic operations on categories arising in algebraic geometry and its homotopytheoretic generalization, derived algebraic geometry. We work with a broad class of derived stacks which we call stacks with air. The class of stacks with air includes in particular all quasicompact, separated derived schemes and (in characteristic zero) all quotients of quasiprojective or smooth derived schemes by affine algebraic groups, and is closed under derived fiber products. We show that the (enriched) derived categories of quasicoherent sheaves on stacks with air behave well under algebraic and geometric operations. Namely, we identify the derived category of a fiber product with the tensor product of the derived categories of the factors. We also identify functors between derived categories of sheaves with integral transforms (providing a generalization of a theorem of Toën [To1] for ordinary schemes over a ring). As a first application, for a stack Y with air, we calculate the Drinfeld center (or synonymously,
Topological string theory on compact CalabiYau: Modularity and boundary conditions
, 2006
"... The topological string partition function Z(λ,t, ¯t) = exp(λ 2g−2 Fg(t, ¯t)) is calculated on a compact CalabiYau M. The Fg(t, ¯t) fulfill the holomorphic anomaly equations, which imply that Ψ = Z transforms as a wave function on the symplectic space H 3 (M, Z). This defines it everywhere in the m ..."
Abstract

Cited by 85 (10 self)
 Add to MetaCart
(Show Context)
The topological string partition function Z(λ,t, ¯t) = exp(λ 2g−2 Fg(t, ¯t)) is calculated on a compact CalabiYau M. The Fg(t, ¯t) fulfill the holomorphic anomaly equations, which imply that Ψ = Z transforms as a wave function on the symplectic space H 3 (M, Z). This defines it everywhere in the moduli space M(M) along with preferred local coordinates. Modular properties of the sections Fg as well as local constraints from the 4d effective action allow us to fix Z to a large extent. Currently with a newly found gap condition at the conifold, regularity at the orbifold and the most naive bounds from Castelnuovo’s theory, we can provide the boundary data, which specify Z, e.g. up to genus 51 for the quintic.
On the Classification of Topological Field Theories
, 2009
"... Our goal in this article is to give an expository account of some recent work on the classification of topological field theories. More specifically, we will outline the proof of a version of the cobordism hypothesis conjectured by Baez and Dolan in [2]. ..."
Abstract

Cited by 51 (0 self)
 Add to MetaCart
(Show Context)
Our goal in this article is to give an expository account of some recent work on the classification of topological field theories. More specifically, we will outline the proof of a version of the cobordism hypothesis conjectured by Baez and Dolan in [2].
Notes on A∞algebras, A∞categories and noncommutative geometry, Homological mirror symmetry
 Lecture Notes in Phys
, 2009
"... 1.1 A∞algebras as spaces........................ 2 ..."
Abstract

Cited by 43 (0 self)
 Add to MetaCart
(Show Context)
1.1 A∞algebras as spaces........................ 2
Topological strings in generalized complex space
"... A twodimensional topological sigmamodel on a generalized CalabiYau target space X is defined. The model is constructed in BatalinVilkovisky formalism using only a generalized complex structure J and a pure spinor ρ on X. In the present construction the algebra of Qtransformations automatically ..."
Abstract

Cited by 40 (1 self)
 Add to MetaCart
A twodimensional topological sigmamodel on a generalized CalabiYau target space X is defined. The model is constructed in BatalinVilkovisky formalism using only a generalized complex structure J and a pure spinor ρ on X. In the present construction the algebra of Qtransformations automatically closes offshell, the model transparently depends only on J, the algebra of observables and correlation functions for topologically trivial maps in genus zero are easily defined. The extended moduli space appears naturally. The familiar action of the twisted N = 2 CFT can be recovered after a gauge fixing. In the open case, we consider an example of generalized deformation of complex structure by a holomorphic Poisson bivector β and recover holomorphic noncommutative Kontsevich ∗product. 1
DBranes And KTheory In 2D Topological Field Theory,” hepth/0609042; see also lectures by G. Moore, at http://online.itp.ucsb.edu/online/mp01
"... This expository paper describes sewing conditions in twodimensional open/closed topological field theory. We include a description of the Gequivariant case, where G is a finite group. We determine the category of boundary conditions in the case that the closed string algebra is semisimple. In this ..."
Abstract

Cited by 37 (0 self)
 Add to MetaCart
(Show Context)
This expository paper describes sewing conditions in twodimensional open/closed topological field theory. We include a description of the Gequivariant case, where G is a finite group. We determine the category of boundary conditions in the case that the closed string algebra is semisimple. In this case we find that sewing constraints – the most primitive form of worldsheet locality – already imply that Dbranes are (Gtwisted) vector bundles on spacetime. We comment on extensions to cochainvalued theories and various applications. Finally, we give uniform proofs of all relevant sewing theorems using Morse theory. August
Homotopy Batalin–Vilkovisky algebras
"... This paper provides an explicit cofibrant resolution of the operad encoding BatalinVilkovisky algebras. Thus it defines the notion of homotopy BatalinVilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
(Show Context)
This paper provides an explicit cofibrant resolution of the operad encoding BatalinVilkovisky algebras. Thus it defines the notion of homotopy BatalinVilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defined by quadratic and linear relations. The operad encoding Batalin– Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a PoincaréBirkhoffWitt Theorem for such an operad and to give an explicit small quasifree resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BValgebras and of homotopy BValgebras. We show that any topological conformal field theory carries a homotopy BValgebra structure which lifts the BValgebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian–Zuckerman, showing that certain vertex algebras have an explicit homotopy BValgebra structure.