Results 1 - 10
of
45
T-Drive: Driving directions based on taxi trajectories
- ACM SIGSPATIAL GIS
, 2010
"... GPS-equipped taxis can be regarded as mobile sensors probing traffic flows on road surfaces, and taxi drivers are usually experienced in finding the fastest (quickest) route to a destination based on their knowledge. In this paper, we mine smart driving directions from the historical GPS trajectorie ..."
Abstract
-
Cited by 96 (21 self)
- Add to MetaCart
(Show Context)
GPS-equipped taxis can be regarded as mobile sensors probing traffic flows on road surfaces, and taxi drivers are usually experienced in finding the fastest (quickest) route to a destination based on their knowledge. In this paper, we mine smart driving directions from the historical GPS trajectories of a large number of taxis, and provide a user with the practically fastest route to a given destination at a given departure time. In our approach, we propose a time-dependent landmark graph, where a node (landmark) is a road segment frequently traversed by taxis, to model the intelligence of taxi drivers and the properties of dynamic road networks. Then, a Variance-Entropy-Based Clustering approach is devised to estimate the distribution of travel time between two landmarks in different time slots. Based on this graph, we design a two-stage routing algorithm to compute the practically fastest route. We build our system based on a realworld trajectory dataset generated by over 33,000 taxis in a period of 3 months, and evaluate the system by conducting both synthetic experiments and in-the-field evaluations. As a result, 60–70 % of the routes suggested by our method are faster than the competing methods, and 20 % of the routes share the same results. On average, 50 % of our routes are at least 20 % faster than the competing approaches.
Driving with Knowledge from the Physical World
- In Proc. of KDD 2011
"... This paper presents a Cloud-based system computing customized and practically fast driving routes for an end user using (historical and real-time) traffic conditions and driver behavior. In this system, GPS-equipped taxicabs are employed as mobile sensors constantly probing the traffic rhythm of a c ..."
Abstract
-
Cited by 67 (13 self)
- Add to MetaCart
(Show Context)
This paper presents a Cloud-based system computing customized and practically fast driving routes for an end user using (historical and real-time) traffic conditions and driver behavior. In this system, GPS-equipped taxicabs are employed as mobile sensors constantly probing the traffic rhythm of a city and taxi drivers’ intelligence in choosing driving directions in the physical world. Meanwhile, a Cloud aggregates and mines the information from these taxis and other sources from the Internet, like Web maps and weather forecast. The Cloud builds a model incorporating day of the week, time of day, weather conditions, and individual driving strategies (both of the taxi drivers and of the end user for whom the route is being computed). Using this model, our system predicts the traffic conditions of a future time (when the computed route is actually driven) and performs a self-adaptive driving direction service for a particular user. This service gradually learns a user’s driving behavior from the user’s GPS logs and customizes the fastest route for the user with the help of the Cloud. We evaluate our service using a real-world dataset generated by over 33,000 taxis over a period of 3 months in Beijing. As a result, our service accurately estimates the travel time of a route for a user; hence finding the fastest route customized for the user.
Adaptive fastest path computation on a road network: A traffic mining approach
- In Proc. 2007 Int. Conf. on Very Large Data Bases (VLDB’07
, 2007
"... Efficient fastest path computation in the presence of varying speed conditions on a large scale road network is an essential problem in modern navigation systems. Factors affecting road speed, such as weather, time of day, and vehicle type, need to be considered in order to select fast routes that m ..."
Abstract
-
Cited by 46 (2 self)
- Add to MetaCart
(Show Context)
Efficient fastest path computation in the presence of varying speed conditions on a large scale road network is an essential problem in modern navigation systems. Factors affecting road speed, such as weather, time of day, and vehicle type, need to be considered in order to select fast routes that match current driving conditions. Most existing systems compute fastest paths based on road Euclidean distance and a small set of predefined road speeds. However, “History is often the best teacher”. Historical traffic data or driving patterns are often more useful than the simple Euclidean distance-based computation because people must have good reasons to choose these routes, e.g., they may want to avoid those that pass through high crime areas at night or that likely encounter accidents, road construction, or traffic jams. In this paper, we present an adaptive fastest path algorithm capable of efficiently accounting for important driving and speed patterns mined from a large set of traffic data. The algorithm is based on the following observations: (1) The hierarchy of roads can be used to partition the road network into areas, and different path pre-computation strategies can be used at the area level, (2) we can limit our route search strategy to edges and path segments that are actually frequently traveled in the data, and (3) drivers usually traverse the road network through the largest roads available given the distance of the trip, except if there are small roads with a significant speed advantage over the large ones. Through an extensive experimental evaluation on real road networks we show that our algorithm provides desirable (short and well-supported) routes, and that it is significantly faster than competing methods.
Finding time-dependent shortestpaths over large graphs,” in
- Proc. 11th EDBT,
, 2008
"... ABSTRACT The spatial and temporal databases have been studied widely and intensively over years. In this paper, we study how to answer queries of finding the best departure time that minimizes the total travel time from a place to another, over a road network, where the traffic conditions dynamical ..."
Abstract
-
Cited by 36 (1 self)
- Add to MetaCart
(Show Context)
ABSTRACT The spatial and temporal databases have been studied widely and intensively over years. In this paper, we study how to answer queries of finding the best departure time that minimizes the total travel time from a place to another, over a road network, where the traffic conditions dynamically change from time to time. We study a generalized form of this problem, called the time-dependent shortest-path problem. A time-dependent graph GT is a graph that has an edge-delay function, wi,j(t), associated with each edge (vi, v j ), to be stored in a database. The edge-delay function w i,j (t) specifies how much time it takes to travel from node v i to node v j , if it departs from v i at time t. A user-specified query is to ask the minimum-travel-time path, from a source node, vs, to a destination node, ve, over the time-dependent graph, GT , with the best departure time to be selected from a time interval T . We denote this user query as LTT(v s , v e , T ) over G T . The challenge of this problem is the added complexity due to the time dependency in the time-dependent graph. That is, edge delays are not constants, and can vary from time to time. In this paper, we propose a novel algorithm to find the minimum-travel-time path with the best departure time for a LTT(v s , v e , T ) query over a large graph G T . Our approach outperforms existing algorithms in terms of both time complexity in theory and efficiency in practice. We will discuss the design of our algorithm, together with its correctness and complexity. We conducted extensive experimental studies over large graphs and will report our findings.
Spatio-temporal Network Databases and Routing Algorithms: A Summary of Results
- Proceedings of International Symposium on Spatial and Temporal Databases (SSTD’07
, 2007
"... Transportation. The content of this work does not necessarily reflect the position or policy of the government and no official ..."
Abstract
-
Cited by 32 (11 self)
- Add to MetaCart
(Show Context)
Transportation. The content of this work does not necessarily reflect the position or policy of the government and no official
Discovering Popular Routes from Trajectories
- In ICDE
, 2011
"... Abstract—The booming industry of location-based services has accumulated a huge collection of users ’ location trajectories of driving, cycling, hiking, etc. In this work, we investigate the problem of discovering the Most Popular Route (MPR) between two locations by observing the traveling behavior ..."
Abstract
-
Cited by 28 (0 self)
- Add to MetaCart
(Show Context)
Abstract—The booming industry of location-based services has accumulated a huge collection of users ’ location trajectories of driving, cycling, hiking, etc. In this work, we investigate the problem of discovering the Most Popular Route (MPR) between two locations by observing the traveling behaviors of many previous users. This new query is beneficial to travelers who are asking directions or planning a trip in an unfamiliar city/area, as historical traveling experiences can reveal how people usually choose routes between locations. To achieve this goal, we firstly develop a Coherence Expanding algorithm to retrieve a transfer network from raw trajectories, for indicating all the possible movements between locations. After that, the Absorbing Markov Chain model is applied to derive a reasonable transfer probability foreachtransfernodeinthe network, which is subsequently used as the popularity indicator in the search phase. Finally, we propose a Maximum Probability Product algorithm to discover the MPR from a transfer network based on the popularity indicators in a breadth-first manner, and we illustrate the results and performance of the algorithm by extensive experiments. I.
A Continuous Query System for Dynamic Route Planning
"... Abstract—In this paper, we address the problem of answering continuous route planning queries over a road network, in the presence of updates to the delay (cost) estimates of links. A simple approach to this problem would be to recompute the best path for all queries on arrival of every delay update ..."
Abstract
-
Cited by 16 (0 self)
- Add to MetaCart
(Show Context)
Abstract—In this paper, we address the problem of answering continuous route planning queries over a road network, in the presence of updates to the delay (cost) estimates of links. A simple approach to this problem would be to recompute the best path for all queries on arrival of every delay update. However, such a naive approach scales poorly when there are many users who have requested routes in the system. Instead, we propose two new classes of approximate techniques – K-paths and proximity measures to substantially speed up processing of the set of designated routes specified by continuous route planning queries in the face of incoming traffic delay updates. Our techniques work through a combination of precomputation of likely good paths and by avoiding complete recalculations on every delay update, instead only sending the user new routes when delays change significantly. Based on an experimental evaluation with 7,000 drives from real taxi cabs, we found that the routes delivered by our techniques are within 5 % of the best shortest path and have run times an order of magnitude or less compared to a naive approach. I.
Urban Computing: Concepts, Methodologies, and Applications
"... Urbanization’s rapid progress has modernized many people’s lives, but also engendered big issues, such as traffic congestion, energy consumption, and pollution. Urban computing aims to tackle these issues by using the data that has been generated in cities, e.g., traffic flow, human mobility and geo ..."
Abstract
-
Cited by 14 (7 self)
- Add to MetaCart
Urbanization’s rapid progress has modernized many people’s lives, but also engendered big issues, such as traffic congestion, energy consumption, and pollution. Urban computing aims to tackle these issues by using the data that has been generated in cities, e.g., traffic flow, human mobility and geographical data. Urban computing connects urban sensing, data management, data analytics, and service providing into a recurrent process for an unobtrusive and continuous improvement of people’s lives, city operation systems, and the environment. Urban computing is an interdisciplinary field where computer sciences meet conventional city-related fields, like transportation, civil engineering, environment, economy, ecology, and sociology, in the context of urban spaces. This article first introduces the concept of urban computing, discussing its general framework and key challenges from the perspective of computer sciences. Secondly, we classify the applications of urban computing into seven categories, consisting of urban planning, transportation, the environment, energy, social, economy, and public safety & security, presenting representative scenarios in each category. Thirdly, we summarize the typical technologies that are needed in urban computing into four folds, which are about urban sensing, urban data management, knowledge fusion across heterogeneous data, and urban data visualization. Finally, we outlook the
Efficient K-Nearest Neighbor Search in Time-Dependent Spatial Networks
, 2010
"... The class of k Nearest Neighbor (kNN) queries in spatial networks has been widely studied in the literature. All existing approaches for kNN search in spatial networks assume that the weight (e.g., travel-time) of each edge in the spatial network is constant. However, in real-world, edge-weights a ..."
Abstract
-
Cited by 11 (1 self)
- Add to MetaCart
(Show Context)
The class of k Nearest Neighbor (kNN) queries in spatial networks has been widely studied in the literature. All existing approaches for kNN search in spatial networks assume that the weight (e.g., travel-time) of each edge in the spatial network is constant. However, in real-world, edge-weights are timedependent and vary significantly in short durations, hence invalidating the existing solutions. In this paper, we study the problem of kNN search in timedependent spatial networks where the weight of each edge is a function of time. We propose two novel indexing schemes, namely Tight Network Index (T NI) and Loose Network Index (LNI) to minimize the number of candidate nearest neighbor objects and, hence, reduce the invocation of the expensive fastest-path computation in time-dependent spatial networks. We demonstrate the efficiency of our proposed solution via experimental evaluations with real-world data-sets, including a variety of large spatial networks with real traffic-data.
Statistical Density Prediction in Traffic Networks
, 2008
"... Recently, modern tracking methods started to allow capturing the position of massive numbers of moving objects. Given this information, it is possible to analyze and predict the traffic density in a network which offers valuable information for traffic control, congestion prediction and prevention. ..."
Abstract
-
Cited by 10 (2 self)
- Add to MetaCart
(Show Context)
Recently, modern tracking methods started to allow capturing the position of massive numbers of moving objects. Given this information, it is possible to analyze and predict the traffic density in a network which offers valuable information for traffic control, congestion prediction and prevention. In this paper, we propose a novel statistical approach to predict the density on any edge of such a network at some time in the future. Our method is based on short-time observations of the traffic history. Therefore, knowing the destination of each traveling individual is not required. Instead, we assume that the individuals will act rationally and choose the shortest path from their starting points to their destinations. Based on this assumption, we introduce a statistical approach to describe the likelihood of any given individual in the network to be located at a certain position at a certain time. Since determining this likelihood is quite expensive when done in a straightforward way, we propose an efficient method to speed up the prediction which is based on a suffix-tree. In our experiments, we show the capability of our approach to make useful predictions about the traffic density and illustrate the efficiency of our new algorithm when calculating these predictions.