Results 1 
3 of
3
Alternative route graphs in road networks
 In Theory and Practice of Algorithms in (Computer) Systems
, 2011
"... Abstract. Every human likes choices. But today’s fast route planning algorithms usually compute just a single route between source and target. There are beginnings to compute alternative routes, but there is a gap between the intuition of humans what makes a good alternative and mathematical defini ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
(Show Context)
Abstract. Every human likes choices. But today’s fast route planning algorithms usually compute just a single route between source and target. There are beginnings to compute alternative routes, but there is a gap between the intuition of humans what makes a good alternative and mathematical definitions needed for grasping these concepts algorithmically. In this paper we make several steps towards closing this gap: Based on the concept of an alternative graph that can compactly encode many alternatives, we define and motivate several attributes quantifying the quality of the alternative graph. We show that it is already NPhard to optimize a simple objective function combining two of these attributes and therefore turn to heuristics. The combination of the refined penalty based iterative shortest path routine and the previously proposed Plateau heuristics yields best results. A user study confirms these results. 1
User Equilibrium Route Assignment for Microscopic Pedestrian Simulation
, 2014
"... For the simulation of pedestrians a method is introduced to find routing alternatives from any origin position to a given destination area in a given geometry composed of walking areas and obstacles. The method includes a parameter which sets a threshold for the approximate minimum size of obstacles ..."
Abstract
 Add to MetaCart
For the simulation of pedestrians a method is introduced to find routing alternatives from any origin position to a given destination area in a given geometry composed of walking areas and obstacles. The method includes a parameter which sets a threshold for the approximate minimum size of obstacles to generate routing alternatives. The resulting data structure for navigation is constructed such that it does not introduce artifacts to the movement of simulated pedestrians and that locally pedestrians prefer to walk on the shortest path. The generated set of routes can be used with iterating static or dynamic assignment methods.