Results 1  10
of
376
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
(Show Context)
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
The Contourlet Transform: An Efficient Directional Multiresolution Image Representation
 IEEE TRANSACTIONS ON IMAGE PROCESSING
"... The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure t ..."
Abstract

Cited by 510 (20 self)
 Add to MetaCart
The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure that is key in visual information. The main challenge in exploring geometry in images comes from the discrete nature of the data. Thus, unlike other approaches, such as curvelets, that first develop a transform in the continuous domain and then discretize for sampled data, our approach starts with a discretedomain construction and then studies its convergence to an expansion in the continuous domain. Specifically, we construct a discretedomain multiresolution and multidirection expansion using nonseparable filter banks, in much the same way that wavelets were derived from filter banks. This construction results in a flexible multiresolution, local, and directional image expansion using contour segments, and thus it is named the contourlet transform. The discrete contourlet transform has a fast iterated filter bank algorithm that requires an order N operations for Npixel images. Furthermore, we establish a precise link between the developed filter bank and the associated continuousdomain contourlet expansion via a directional multiresolution analysis framework. We show that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves. Finally, we show some numerical experiments demonstrating the potential of contourlets in several image processing applications.
A review of curvelets and recent applications
 IEEE Signal Processing Magazine
, 2009
"... Multiresolution methods are deeply related to image processing, biological and computer vision, scientific computing, etc. The curvelet transform is a multiscale directional transform which allows an almost optimal nonadaptive sparse representation of objects with edges. It has generated increasing ..."
Abstract

Cited by 127 (10 self)
 Add to MetaCart
(Show Context)
Multiresolution methods are deeply related to image processing, biological and computer vision, scientific computing, etc. The curvelet transform is a multiscale directional transform which allows an almost optimal nonadaptive sparse representation of objects with edges. It has generated increasing interest in the community of applied mathematics and signal processing over the past years. In this paper, we present a review on the curvelet transform, including its history beginning from wavelets, its logical relationship to other multiresolution multidirectional methods like contourlets and shearlets, its basic theory and discrete algorithm. Further, we consider recent applications in image/video processing, seismic exploration, fluid mechanics, simulation of partial different equations, and compressed sensing.
Fast image recovery using variable splitting and constrained optimization
 IEEE Trans. Image Process
, 2010
"... Abstract—We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an `2 datafidelity term and a nonsmooth regularizer. This formulation allows both wavele ..."
Abstract

Cited by 125 (9 self)
 Add to MetaCart
(Show Context)
Abstract—We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an `2 datafidelity term and a nonsmooth regularizer. This formulation allows both waveletbased (with orthogonal or framebased representations) regularization or totalvariation regularization. Our approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is then addressed with an augmented Lagrangian method. The proposed algorithm is an instance of the socalled alternating direction method of multipliers, for which convergence has been proved. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is faster than the current state of the art methods. Index Terms—Augmented Lagrangian, compressive sensing, convex optimization, image reconstruction, image restoration,
ForWaRD: FourierWavelet Regularized Deconvolution for IllConditioned Systems
 IEEE Trans. on Signal Processing
, 2002
"... We propose an efficient, hybrid FourierWavelet Regularized Deconvolution (ForWaRD) al gorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's sparse representation of the colored noise i ..."
Abstract

Cited by 112 (2 self)
 Add to MetaCart
(Show Context)
We propose an efficient, hybrid FourierWavelet Regularized Deconvolution (ForWaRD) al gorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's sparse representation of the colored noise inherent in deconvolution, while the wavelet shrinkage exploits the wavelet do main's sparse representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approxi mate meansquarederror (MSE) metric and find that signals with sparser wavelet representa tions require less Fourier shrinkage. ForWaRD is applicable to all illconditioned deconvolution problems, unlike the purely waveletbased Wavelet Vaguelette Deconvolution (WVD), and its es timate features minimal ringing, unlike purely Fourierbased Wiener deconvolution. We analyze ForWaRD's MSE decay rate as the number of samples increases and demonstrate its improved performance compared to the optimal WVD over a wide range of practical samplelengths.
Dictionaries for Sparse Representation Modeling
"... Sparse and redundant representation modeling of data assumes an ability to describe signals as linear combinations of a few atoms from a prespecified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this model. In general, the choice of a p ..."
Abstract

Cited by 108 (3 self)
 Add to MetaCart
Sparse and redundant representation modeling of data assumes an ability to describe signals as linear combinations of a few atoms from a prespecified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this model. In general, the choice of a proper dictionary can be done using one of two ways: (i) building a sparsifying dictionary based on a mathematical model of the data, or (ii) learning a dictionary to perform best on a training set. In this paper we describe the evolution of these two paradigms. As manifestations of the first approach, we cover topics such as wavelets, wavelet packets, contourlets, and curvelets, all aiming to exploit 1D and 2D mathematical models for constructing effective dictionaries for signals and images. Dictionary learning takes a different route, attaching the dictionary to a set of examples it is supposed to serve. From the seminal work of Field and Olshausen, through the MOD, the KSVD, the Generalized PCA and others, this paper surveys the various options such training has to offer, up to the most recent contributions and structures.
Optimally sparse multidimensional representations using shearlets, preprint
, 2006
"... Abstract. Recent advances in applied mathematics and signal processing have shown that, in order to obtain sparse representations of multidimensional functions and signals, one has to use representation elements distributed not only at various scales and locations – as in classical wavelet theory – ..."
Abstract

Cited by 104 (48 self)
 Add to MetaCart
(Show Context)
Abstract. Recent advances in applied mathematics and signal processing have shown that, in order to obtain sparse representations of multidimensional functions and signals, one has to use representation elements distributed not only at various scales and locations – as in classical wavelet theory – but also at various directions. In this paper, we show that we obtain a construction having exactly these properties by using the framework of affine systems. The representation elements that we obtain are generated by translations, dilations, and shear transformations of a single mother function, and are called shearlets. The shearlets provide optimally sparse representations for 2D functions that are smooth away from discontinuities along curves. Another benefit of this approach is that, thanks to their mathematical structure, these systems provide a Multiresolution analysis similar to the one associated with classical wavelets, which is very useful for the development of fast algorithmic implementations.
OPTIMALLY SPARSE MULTIDIMENSIONAL REPRESENTATION USING SHEARLETS
"... Abstract. In this paper we show that the shearlets, an affinelike system of functions recently introduced by the authors and their collaborators, are essentially optimal in representing 2–dimensional functions f that are C2 except for discontinuities along C2 curves. More specifically, if f S N is ..."
Abstract

Cited by 103 (29 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we show that the shearlets, an affinelike system of functions recently introduced by the authors and their collaborators, are essentially optimal in representing 2–dimensional functions f that are C2 except for discontinuities along C2 curves. More specifically, if f S N is the N–term reconstruction of f obtained by using the N largest coefficients in the shearlet representation, then the asymptotic approximation error decays as ‖f − f S N ‖2 2 ≃ N −2 (log N) 3, N → ∞, which is essentially optimal, and greatly outperforms the corresponding asymptotic approximation rate N −1 associated with wavelet approximations. Unlike the curvelets, that have similar sparsity properties, the shearlets form an affinelike system and have a simpler mathematical structure. In fact, the elements of this system form a Parseval frame and are generated by applying dilations, shear transformations and translations to a single welllocalized window function.
An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems
 IEEE Trans. Image Process
, 2011
"... Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and con ..."
Abstract

Cited by 89 (9 self)
 Add to MetaCart
Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and constraint are usually convex, several particular features of these problems (huge dimensionality, nonsmoothness) preclude the use of offtheshelf optimization tools and have stimulated a considerable amount of research. In this paper, we propose a new efficient algorithm to handle one class of constrained problems (often known as basis pursuit denoising) tailored to image recovery applications. The proposed algorithm, which belongs to the family of augmented Lagrangian methods, can be used to deal with a variety of imaging IPLIP, including deconvolution and reconstruction from compressive observations (such as MRI), using either totalvariation or waveletbased (or, more generally, framebased) regularization. The proposed algorithm is an instance of the socalled alternating direction method of multipliers, for which convergence sufficient conditions are known; we show that these conditions are satisfied by the proposed algorithm. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is a strong contender for the stateoftheart. Index Terms—Convex optimization, frames, image reconstruction, image restoration, inpainting, totalvariation. A. Problem Formulation