Results 1  10
of
1,023
Opportunistic Beamforming Using Dumb Antennas
 IEEE Transactions on Information Theory
, 2002
"... Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent timevarying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous cha ..."
Abstract

Cited by 797 (1 self)
 Add to MetaCart
(Show Context)
Multiuser diversity is a form of diversity inherent in a wireless network, provided by independent timevarying channels across the different users. The diversity benefit is exploited by tracking the channel fluctuations of the users and scheduling transmissions to users when their instantaneous channel quality is near the peak. The diversity gain increases with the dynamic range of the fluctuations and is thus limited in environments with little scattering and/or slow fading. In such environments, we propose the use of multiple transmit antennas to induce large and fast channel fluctuations so that multiuser diversity can still be exploited. The scheme can be interpreted as opportunistic beamforming and we show that true beamforming gains can be achieved when there are sufficient users, even though very limited channel feedback is needed. Furthermore, in a cellular system, the scheme plays an additional role of opportunistic nulling of the interference created on users of adjacent cells. We discuss the design implications of implementing this scheme in a complete wireless system.
Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding
 IEEE TRANS. ON INFORMATION THEORY
, 1999
"... We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing informationembedding rate, mini ..."
Abstract

Cited by 492 (14 self)
 Add to MetaCart
(Show Context)
We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing informationembedding rate, minimizing distortion between the host signal and composite signal, and maximizing the robustness of the embedding. We introduce new classes of embedding methods, termed quantization index modulation (QIM) and distortioncompensated QIM (DCQIM), and develop convenient realizations in the form of what we refer to as dither modulation. Using deterministic models to evaluate digital watermarking methods, we show that QIM is "provably good" against arbitrary bounded and fully informed attacks, which arise in several copyright applications, and in particular, it achieves provably better rate distortionrobustness tradeoffs than currently popular spreadspectrum and lowbit(s) modulation methods. Furthermore, we show that for some important classes of probabilistic models, DCQIM is optimal (capacityachieving) and regular QIM is nearoptimal. These include both additive white Gaussian noise (AWGN) channels, which may be good models for hybrid transmission applications such as digital audio broadcasting, and meansquareerrorconstrained attack channels that model privatekey watermarking applications.
Capacity Limits of MIMO Channels
 IEEE J. SELECT. AREAS COMMUN
, 2003
"... We provide an overview of the extensive recent results on the Shannon capacity of singleuser and multiuser multipleinput multipleoutput (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about t ..."
Abstract

Cited by 409 (17 self)
 Add to MetaCart
We provide an overview of the extensive recent results on the Shannon capacity of singleuser and multiuser multipleinput multipleoutput (MIMO) channels. Although enormous capacity gains have been predicted for such channels, these predictions are based on somewhat unrealistic assumptions about the underlying timevarying channel model and how well it can be tracked at the receiver, as well as at the transmitter. More realistic assumptions can dramatically impact the potential capacity gains of MIMO techniques. For timevarying MIMO channels there are multiple Shannon theoretic capacity definitions and, for each definition, different correlation models and channel information assumptions that we consider. We first provide a comprehensive summary of ergodic and capacity versus outage results for singleuser MIMO channels. These results indicate that the capacity gain obtained from multiple antennas heavily depends
Zeroforcing methods for downlink spatial multiplexing in multiuser MIMO channels
 IEEE TRANS. SIGNAL PROCESSING
, 2004
"... The use of spacedivision multiple access (SDMA) in the downlink of a multiuser multipleinput, multipleoutput (MIMO) wireless communications network can provide a substantial gain in system throughput. The challenge in such multiuser systems is designing transmit vectors while considering the coc ..."
Abstract

Cited by 362 (28 self)
 Add to MetaCart
The use of spacedivision multiple access (SDMA) in the downlink of a multiuser multipleinput, multipleoutput (MIMO) wireless communications network can provide a substantial gain in system throughput. The challenge in such multiuser systems is designing transmit vectors while considering the cochannel interference of other users. Typical optimization problems of interest include the capacity problem—maximizing the sum information rate subject to a power constraint—or the power control problem—minimizing transmitted power such that a certain qualityofservice metric for each user is met. Neither of these problems possess closedform solutions for the general multiuser MIMO channel, but the imposition of certain constraints can lead to closedform solutions. This paper presents two such constrained solutions. The first, referred to as “blockdiagonalization,” is a generalization of channel inversion when there are multiple antennas at each receiver. It is easily adapted to optimize for either maximum transmission rate or minimum power and approaches the optimal solution at high SNR. The second, known as “successive optimization, ” is an alternative method for solving the power minimization problem one user at a time, and it yields superior results in some (e.g., low SNR) situations. Both of these algorithms are limited to cases where the transmitter has more antennas than all receive antennas combined. In order to accommodate more general scenarios, we also propose a framework for coordinated transmitterreceiver processing that generalizes the two algorithms to cases involving more receive than transmit antennas. While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity.
Nested Linear/Lattice Codes for Structured Multiterminal Binning
, 2002
"... Network information theory promises high gains over simple pointtopoint communication techniques, at the cost of higher complexity. However, lack of structured coding schemes limited the practical application of these concepts so far. One of the basic elements of a network code is the binning sch ..."
Abstract

Cited by 342 (14 self)
 Add to MetaCart
Network information theory promises high gains over simple pointtopoint communication techniques, at the cost of higher complexity. However, lack of structured coding schemes limited the practical application of these concepts so far. One of the basic elements of a network code is the binning scheme. Wyner and other researchers proposed various forms of coset codes for efficient binning, yet these schemes were applicable only for lossless source (or noiseless channel) network coding. To extend the algebraic binning approach to lossy source (or noisy channel) network coding, recent work proposed the idea of nested codes, or more specifically, nested paritycheck codes for the binary case and nested lattices in the continuous case. These ideas connect network information theory with the rich areas of linear codes and lattice codes, and have strong potential for practical applications. We review these recent developments and explore their tight relation to concepts such as combined shaping and precoding, coding for memories with defects, and digital watermarking. We also propose a few novel applications adhering to a unified approach.
Duality, achievable rates, and sumrate capacity of Gaussian MIMO broadcast channels
 IEEE TRANS. INFORM. THEORY
, 2003
"... We consider a multiuser multipleinput multipleoutput (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. In this paper, we establish a duality between ..."
Abstract

Cited by 336 (21 self)
 Add to MetaCart
We consider a multiuser multipleinput multipleoutput (MIMO) Gaussian broadcast channel (BC), where the transmitter and receivers have multiple antennas. Since the MIMO BC is in general a nondegraded BC, its capacity region remains an unsolved problem. In this paper, we establish a duality between what is termed the “dirty paper” achievable region (the Caire–Shamai achievable region) for the MIMO BC and the capacity region of the MIMO multipleaccess channel (MAC), which is easy to compute. Using this duality, we greatly reduce the computational complexity required for obtaining the dirty paper achievable region for the MIMO BC. We also show that the dirty paper achievable region achieves the sumrate capacity of the MIMO BC by establishing that the maximum sum rate of this region equals an upper bound on the sum rate of the MIMO BC.
The capacity region of the Gaussian multipleinput multipleoutput broadcast channel
 IEEE TRANS. INF. THEORY
, 2006
"... The Gaussian multipleinput multipleoutput (MIMO) broadcast channel (BC) is considered. The dirtypaper coding (DPC) rate region is shown to coincide with the capacity region. To that end, a new notion of an enhanced broadcast channel is introduced and is used jointly with the entropy power inequa ..."
Abstract

Cited by 331 (7 self)
 Add to MetaCart
The Gaussian multipleinput multipleoutput (MIMO) broadcast channel (BC) is considered. The dirtypaper coding (DPC) rate region is shown to coincide with the capacity region. To that end, a new notion of an enhanced broadcast channel is introduced and is used jointly with the entropy power inequality, to show that a superposition of Gaussian codes is optimal for the degraded vector broadcast channel and that DPC is optimal for the nondegraded case. Furthermore, the capacity region is characterized under a wide range of input constraints, accounting, as special cases, for the total power and the perantenna power constraints.
A VectorPerturbation technique for NearCapacity . . .
 IEEE TRANS. COMMUN
, 2005
"... Recent theoretical results describing the sum capacity when using multiple antennas to communicate with multiple users in a known rich scattering environment have not yet been followed with practical transmission schemes that achieve this capacity. We introduce a simple encoding algorithm that achi ..."
Abstract

Cited by 321 (10 self)
 Add to MetaCart
(Show Context)
Recent theoretical results describing the sum capacity when using multiple antennas to communicate with multiple users in a known rich scattering environment have not yet been followed with practical transmission schemes that achieve this capacity. We introduce a simple encoding algorithm that achieves nearcapacity at sum rates of tens of bits/channel use. The algorithm is a variation on channel inversion that regularizes the inverse and uses a “sphere encoder ” to perturb the data to reduce the power of the transmitted signal. This paper is comprised of two parts. In this first part, we show that while the sum capacity grows linearly with the minimum of the number of antennas and users, the sum rate of channel inversion does not. This poor performance is due to the large spread in the singular values of the channel matrix. We introduce regularization to improve the condition of the inverse and maximize the signaltointerferenceplusnoise ratio at the receivers. Regularization enables linear growth and works especially well at low signaltonoise ratios (SNRs), but as we show in the second part, an additional step is needed to achieve nearcapacity performance at all SNRs.
Sum capacity of the vector Gaussian broadcast channel and uplinkdownlink duality
 IEEE TRANS. ON INFORM. THEORY
, 2003
"... We characterize the sum capacity of the vector Gaussian broadcast channel by showing that the existing inner bound of Marton and the existing upper bound of Sato are tight for this channel. We exploit an intimate fourway connection between the vector broadcast channel, the corresponding pointtopo ..."
Abstract

Cited by 319 (2 self)
 Add to MetaCart
We characterize the sum capacity of the vector Gaussian broadcast channel by showing that the existing inner bound of Marton and the existing upper bound of Sato are tight for this channel. We exploit an intimate fourway connection between the vector broadcast channel, the corresponding pointtopoint channel (where the receivers can cooperate), the multiple access channel (where the role of transmitters and receivers are reversed), and the corresponding pointtopoint channel (where the transmitters can cooperate).