Results 1 - 10
of
692
Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model
- J. Climate
"... general circulation model, ECHAM5, is used to study the impact of changes in horizontal and vertical resolution on seasonal mean climate. In a series of AMIP-style experiments with resolutions ranging between T21L19 and T159L31, the systematic errors and convergence properties are assessed for two v ..."
Abstract
-
Cited by 129 (6 self)
- Add to MetaCart
general circulation model, ECHAM5, is used to study the impact of changes in horizontal and vertical resolution on seasonal mean climate. In a series of AMIP-style experiments with resolutions ranging between T21L19 and T159L31, the systematic errors and convergence properties are assessed for two vertical resolutions. At low vertical resolution (L19) there is no evidence for convergence to a more realistic climate state for resolutions higher than T42. At higher vertical resolution (L31), on the other hand, the root-mean-squared-errors decrease monotonously with increasing horizontal resolution. Furthermore, except for T42, the L31 versions are superior to their L19 counterparts, and the improvements become more evident at increasingly higher horizontal resolutions. This applies, in particular, to the zonal mean climate state and also to stationary wave patterns in boreal winter. As in previous studies, increasing horizontal resolution leads to a warming of the troposphere, most prominently at mid-latitudes and, hence, to a poleward shift and intensification of the mid-latitude westerlies. Increasing the vertical resolution has the opposite effect, almost independent of horizontal resolution: Whereas the atmosphere is colder at low
2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation
"... This paper describes the Simple Ocean Data Assimilation (SODA) reanalysis of ocean climate variability. In the assimilation, a model forecast produced by an ocean general circulation model with an average resolution of 0.25 ° 0.4 ° 40 levels is continuously corrected by contemporaneous observati ..."
Abstract
-
Cited by 119 (9 self)
- Add to MetaCart
This paper describes the Simple Ocean Data Assimilation (SODA) reanalysis of ocean climate variability. In the assimilation, a model forecast produced by an ocean general circulation model with an average resolution of 0.25 ° 0.4 ° 40 levels is continuously corrected by contemporaneous observations with corrections estimated every 10 days. The basic reanalysis, SODA 1.4.2, spans the 44-yr period from 1958 to 2001, which complements the span of the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis (ERA-40). The observation set for this experiment includes the historical archive of hydrographic profiles supplemented by ship intake measurements, moored hydrographic obser-vations, and remotely sensed SST. A parallel run, SODA 1.4.0, is forced with identical surface boundary conditions, but without data assimilation. The new reanalysis represents a significant improvement over a previously published version of the SODA algorithm. In particular, eddy kinetic energy and sea level variability are much larger than in previous versions and are more similar to estimates from independent observations. One issue addressed in this paper is the relative importance of the model forecast versus the observations for the analysis. The results show that at near-annual frequencies the forecast model has a strong influence, whereas at decadal frequencies the observations become increasingly dominant in the analysis. As a consequence, interannual variability in SODA 1.4.2 closely resembles interannual variability in SODA 1.4.0. However, decadal anomalies of the 0–700-m heat content from SODA 1.4.2 more closely resemble heat content anomalies based on observations. 1.
2006: Storm tracks and climate change
- J. Climate
"... Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by observed boundary conditions, produces results that agree we ..."
Abstract
-
Cited by 112 (3 self)
- Add to MetaCart
Extratropical and tropical transient storm tracks are investigated from the perspective of feature tracking in the ECHAM5 coupled climate model for the current and a future climate scenario. The atmosphere-only part of the model, forced by observed boundary conditions, produces results that agree well with analyses from the 40-yr ECMWF Re-Analysis (ERA-40), including the distribution of storms as a function of maximum intensity. This provides the authors with confidence in the use of the model for the climate change experiments. The statistical distribution of storm intensities is virtually preserved under climate change using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario until the end of this century. There are no indications in this study of more intense storms in the future climate, either in the Tropics or extratropics, but rather a minor reduction in the number of weaker storms. However, significant changes occur on a regional basis in the location and intensity of storm tracks. There is a clear poleward shift in the Southern Hemisphere with consequences of reduced precipitation for several areas, including southern Australia. Changes in the Northern Hemisphere are less distinct, but there are also indications of a poleward shift, a weakening of the Mediterranean storm track, and a strengthening of the storm track north of the British Isles. The tropical storm tracks undergo considerable changes including a weakening in the Atlantic sector and a strengthening and equatorward shift in the eastern Pacific. It is suggested that some of the changes, in particular the tropical ones, are due to an SST warming maximum in the eastern Pacific. The shift in the extratropical storm tracks is shown to be associated with changes in the zonal SST gradient in particular for the Southern Hemisphere. 1.
King (2006), The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures
- J. Clim
"... Since the mid-1960s, rapid regional summer warming has occurred on the east coast of the northern Antarctic Peninsula, with near-surface temperatures increasing by more than 2°C. This warming has con-tributed significantly to the collapse of the northern sections of the Larsen Ice Shelf. Coincident ..."
Abstract
-
Cited by 49 (7 self)
- Add to MetaCart
Since the mid-1960s, rapid regional summer warming has occurred on the east coast of the northern Antarctic Peninsula, with near-surface temperatures increasing by more than 2°C. This warming has con-tributed significantly to the collapse of the northern sections of the Larsen Ice Shelf. Coincident with this warming, the summer Southern Hemisphere Annular Mode (SAM) has exhibited a marked trend, sug-gested by modeling studies to be predominantly a response to anthropogenic forcing, resulting in increased westerlies across the northern peninsula. Observations and reanalysis data are utilized to demonstrate that the changing SAM has played a key role in driving this local summer warming. It is proposed that the stronger summer westerly winds reduce the blocking effect of the Antarctic Peninsula and lead to a higher frequency of air masses being advected eastward over the orographic barrier of the northern Antarctic Peninsula. When this occurs, a combination of a climatological temperature gradient across the barrier and the formation of a föhn wind on the lee side typically results in a summer near-surface temperature sensitivity to the SAM that is 3 times greater on the eastern side of the peninsula than on the west. SAM variability is also shown to play a less important role in determining summer temperatures at stations west of the barrier in the northern peninsula (62°S), both at the surface and throughout the troposphere. This is in contrast to a station farther south (65°S) where the SAM exerts little influence. 1.
Estimates of the global water budget and its annual cycle using observational and model data
- J. Hydrometeorol. 2007
"... A brief review is given of research in the Climate Analysis Section at NCAR on the water cycle. Results are used to provide a new estimate of the global hydrological cycle for long-term annual means that includes estimates of the main reservoirs of water as well as the flows of water among them. For ..."
Abstract
-
Cited by 43 (7 self)
- Add to MetaCart
A brief review is given of research in the Climate Analysis Section at NCAR on the water cycle. Results are used to provide a new estimate of the global hydrological cycle for long-term annual means that includes estimates of the main reservoirs of water as well as the flows of water among them. For precipitation P over land a comparison among three datasets enables uncertainties to be estimated. In addition, results are presented for the mean annual cycle of the atmospheric hydrological cycle based on 1979–2000 data. These include monthly estimates of P, evapotranspiration E, atmospheric moisture convergence over land, and changes in atmospheric storage, for the major continental landmasses, zonal means over land, hemispheric land means, and global land means. The evapotranspiration is computed from the Community Land Model run with realistic atmospheric forcings, including precipitation that is constrained by observations for monthly means but with high-frequency information taken from atmospheric reanalyses. Results for E P are contrasted with those from atmospheric moisture budgets based on 40-yr ECMWF Re-Analysis (ERA-40) data. The latter show physically unrealistic results, because evaporation often exceeds precipitation over land, especially in the Tropics and subtropics. 1.
2007), A large annual cycle in ozone above the tropical tropopause linked to the Brewer‐Dobson circulation
- J. Atmos. Sci
"... Near-equatorial ozone observations from balloon and satellite measurements reveal a large annual cycle in ozone above the tropical tropopause. The relative amplitude of the annual cycle is large in a narrow vertical layer between 16 and 19 km, with approximately a factor of 2 change in ozone between ..."
Abstract
-
Cited by 42 (3 self)
- Add to MetaCart
Near-equatorial ozone observations from balloon and satellite measurements reveal a large annual cycle in ozone above the tropical tropopause. The relative amplitude of the annual cycle is large in a narrow vertical layer between 16 and 19 km, with approximately a factor of 2 change in ozone between the minimum (during NH winter) and maximum (during NH summer). The annual cycle in ozone occurs over the same altitude region, and is approximately in phase with the well-known annual variation in tropical temperature. This study shows that the large annual variation in ozone occurs primarily because of varia-tions in vertical transport associated with mean upwelling in the lower stratosphere (the Brewer–Dobson circulation); the maximum relative amplitude peak in the lower stratosphere is collocated with the strongest background vertical gradients in ozone. A similar large seasonal cycle is observed in carbon monoxide (CO) above the tropical tropopause, which is approximately out of phase with ozone (associated with an oppo-sitely signed vertical gradient). The observed ozone and CO variations can be used to constrain estimates of the seasonal cycle in tropical upwelling. 1.
2011: Winter warming in West Antarctica caused by central tropical Pacific warming
- Nat. Geosci
"... substantial warming in the past 30 years. An increase in the circumpolar westerlies, owing in part to the decline in stratospheric ozone concentrations since the late 1970s, may account for warming trends in the peninsula region in austral summer and autumn. The more widespread warming in continenta ..."
Abstract
-
Cited by 41 (3 self)
- Add to MetaCart
substantial warming in the past 30 years. An increase in the circumpolar westerlies, owing in part to the decline in stratospheric ozone concentrations since the late 1970s, may account for warming trends in the peninsula region in austral summer and autumn. The more widespread warming in continental West Antarctica (Ellsworth Land and Marie Byrd Land) occurs primarily in austral winter and spring, and remains unexplained. Here we use observations of Antarctic surface temperature and global sea surface temperature, and atmospheric circulation data to show that recent warming in continental West Antarctica is linked to sea surface temperature changes in the tropical Pacific. Over the past 30 years, anomalous sea surface temperatures in the central tropical Pacific have generated an atmospheric Rossby wave response that influences atmospheric circulation over the Amundsen Sea, causing increased advection of warm air to the Antarctic continent. General circulation model experiments show that the central tropical Pacific is a critical region for producing the observed high latitude response. We conclude that, by affecting the atmospheric circulation at high southern latitudes, increasing tropical sea surface temperatures may account for West Antarctic warming through most of the twentieth century. It has long been known that parts of the Antarctic Peninsulaare warming rapidly1. Recently, it has been recognized thatsignificant warming trends extend considerably south of the Peninsula to include much of continental West Antarctica2,3, comprised of Ellsworth Land (∼79◦W to 103◦W) and Marie Byrd Land (∼103◦W to 158◦W). West Antarctica is the key
Toward elimination of the warm bias in historic radiosonde temperature records—Some new results from a comprehensive intercomparison of upper-air data
- J. Clim
, 2008
"... The apparent cooling trend in observed global mean temperature series from radiosonde records relative to Microwave Sounding Unit (MSU) radiances has been a long-standing problem in upper-air climatology. It is very likely caused by a warm bias of radiosonde temperatures in the 1980s, which has been ..."
Abstract
-
Cited by 40 (3 self)
- Add to MetaCart
The apparent cooling trend in observed global mean temperature series from radiosonde records relative to Microwave Sounding Unit (MSU) radiances has been a long-standing problem in upper-air climatology. It is very likely caused by a warm bias of radiosonde temperatures in the 1980s, which has been reduced over time with better instrumentation and correction software. The warm bias in the MSU-equivalent lower stratospheric (LS) layer is estimated as 0.6 0.3 K in the global mean and as 1.0 0.3 K in the tropical (20°S–20°N) mean. These estimates are based on comparisons of unadjusted radiosonde data, not only with MSU data but also with background forecast (BG) temperature time series from the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and with two new homogenized radiosonde datasets. One of the radiosonde datasets [Radiosonde Observation Correction using Reanalyses (RAOBCORE) version 1.4] employs the BG as reference for homogenization, which is not strictly inde-pendent of MSU data. The second radiosonde dataset uses the dates of the breakpoints detected by RAOBCORE as metadata for homogenization. However, it relies only on homogeneous segments of neighboring radiosonde data for break-size estimation. Therefore, adjustments are independent of satellite data.
Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century
- J. Hydrometeorol
"... The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and ..."
Abstract
-
Cited by 36 (1 self)
- Add to MetaCart
The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper de-scribes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses model-independent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others. 1.